Карбон или углепластик что лучше – Что такое карбон и где его можно купить? Конечно у нас! Быстрая доставка и хороший сервис отличный Карбон для тюнинга!!

Содержание

Карбоновые удилища. Вся правда о карбоне

В последнее время, как только заходит речь об удилищах, сразу же вспоминают про различные аббревиатуры, которые характеризуют карбон, из которого сделаны удилища. 1К, 2К, 3К. «Это удилище из высокотехнологичного карбона», «Высококачественный карбон, делает удилище..», «Карбон, из которого сделан бланк, отвечает самым высоким требованиям» и так далее, и так далее. А что же скрывается за всей этой маркетинговой терминологией?

Что такое карбон?

Карбон — углерод, представляющий собой полимерный композиционные материал из переплетенных нитей углеродного волокна, расположенных в матрице из полимерных смол. Отличается высоко прочностью и малой массой. Зачастую гораздо прочнее стали, но в разы легче. По удельным характеристикам превосходит многие высокопрочные стали.

Но отойдем в сторону от точных определений. Самое главное, что вы должны понимать в карбоне, что его на самом деле существует два вида: чистое углеродное волокно (оно же carbon fiber) и углепластик (полимер, усиленный углеродным волокном — carbon fiber reinforced polymer). Оба этих материала в быту называют карбоном, что, в конечном итоге, привело к тому, что понятия стали путать между собой.

Практически весь карбон, из которого делаются удилища получается из полиакрилонитрила (сокращенно ПАН) при помощи окислительного пиролиза и последующей обработки в инертном газе. Нити углерода получаются очень тонкие (ориентировочно 0,005-0,10мм в диаметре), сломать их очень просто, а вот порвать очень сложно. Из этих нитей и сплетаются ткани, из которых затем делаются бланки для удилищ.

Почему карбон так удобен для производстве удилищ?

Использование карбона позволяет достигнуть высокой прочности удилища, жесткости, при очень малом весе. Дело в том, что карбон является материалом, механические свойства которого зависят от направления волокон. Комбинируя их в различных направлениях, можно добиваться оптимальных характеристик различных изделий, будь то удилища или любое другой изделие. То есть, характеристики бланка зависят напрямую от того плетения, на которое пал выбор разработчиков удилища. Карбон позволяет добиться практически любой формы изделия, именно поэтому у инженеров куда больше возможностей и свободы в создании «идеального» удилища.

Из какого карбона лучше всего покупать удилища?

Это очень сложный вопрос. Определить на глазок что за карбон перед вами очень тяжело. Производители могут написать всякое. Единственный совет, который точно можно дать — это избегать различных дешевых «трехкопеечных» бланков непонятного производства. Остается только гадать откуда производитель берет этот материал. А самое главное, большинство рецептов карбонового волокна являются частной собственностью (запатентованными) и просто так ни одна фирма не расскажет вам состав.

Точно так же не стоит доверять различным рекламным лозунгам, что такая-то компания использует «особенный», «исключительный», «высокотехнологичный» и так далее карбон. Правда состоит в том, что две трети мирового рынка по производству карбона принадлежат трем японским фирмам — Toray (30%), Mitsubishi (18%), Toho (18%). За ними расположились такие фирмы, как венгерская Zoltek (17%), немецкая Hexcel (7%), американская Cytek (3%), на всех остальных приходится в общей сложности еще 6%.

Всего в год производится порядка 43,5 тысяч тонн карбона. Из них 41% — потребляет авиация, космическая и военные промышленности. 17% — спорт, 12% — строительство 12% — различные нужды, по 5%-6% автомобилестроение, гражданская инженерия и так далее. Не будем тонуть в цифрах.

Важно, что из всего оборота на спорт, рыбалка забирает не более 2-3%. Теперь вдумайтесь — если вы владеете инфраструктурой, позволяющей исследовать новые виды карбоновых волокон, чем вы займетесь — производством деталей для космической промышленности или для удилищ? Будете работать с 41% рынка или сосредоточитесь на двух процентах даже не от общего рынка, а от 1/5 этого рынка? Ответ очевиден, поэтому искренность заявлений производителей рыболовных аксессуаров касательно «уникального карбона» вызывает большие подозрения. Мы не беремся утверждать, правда это или нет. Мы просто даем пищу для размышлений.

Характеристики карбона

При получении карбона из поликарилонитрила, под микроскопом полученная нить будет напоминать ствол дерева. Плотный в центре, с шероховатой корой снаружи. Если продолжать очищать нить от «коры», то получится нить меньшего диаметра, но большей плотности. Соответственно на одну и ту же единицу площади поместится большее количество таких нитей, что позволит добиться не меньшей жесткости, но гораздо уменьшить вес. Производство таких тонких волокон сопряжено с большими издержками, потому что волокно получается хрупким и использовать его необходимо с большой осторожностью. Отсюда и высокая стоимость такого карбона. Однако очень эластичный карбон является очень хрупким материалом. Поэтому инженером постоянно приходится ломать голову, чтобы найти оптимальный баланс между прочностью и эластичностью. Это достигается уже при помощи рецепта карбонового волокна, в котором комбинируют несколько слоев карбона с различными характеристиками. Каждая такая комбинация и есть главная тайна и секрет любого удилища, да и просто изделия.

Теперь стоит поговорить о самых наших любимых характеристиках — 1К, 2К, 3К, которыми часто маркируют карбон. Подобная маркировка относится к плетению углеродного волокна. Нити собирают в полоски и эти полоски переплетают друг с другом. 1К означает, что в полосе 1000 нитей, 2К — 2000 нитей, а 3К — 3000 нитей. На самом деле эта характеристика никаким образом не является признаком тех или иных свойств самого волокна. Важно не количество нитей в полосе, а то, каким образом плетутся эти полосы, и из какого состава-рецепта сделаны волокна. А это уже зависит от производителя.

Вернемся к мировому рыболовному рынку!

Здесь все сурово. Подавляющее большинство удилищ, которые сегодня продаются в магазинах изготовлены в Азии, на фабриках, каждая из которых обслуживает сразу несколько брендов. Современные бренды, причем не только в рыболовной индустрии, в большинстве своем являются самыми настоящими маркетинговыми и инженерными центрами, но не производителями. Они заключает контракты с так называемыми Original Equipment Manufactures, если говорить по-русски, посредниками, отсылают им дизайн и желаемые характеристики, которые они хотят получить на выходе, а уже OEM несет ответственность за производство. Такие фабрики отправляют готовые удилища, на которых стоит Made in China, или же могут отправить удилище, которое будет еще доведено до ума. Во втором случае вы можете зачастую видеть заветные Made in UK, Made in Germany и так далее.

Вполне распространенная практика, когда сразу несколько компаний работает с одной и той же фабрикой. Но также и бывает масса случаев, когда один бренд работает с несколькими OEM, когда хочет производить несколько видов удилищ.

Но это вовсе не означает, что вас обманывают. Как раз нет. Ведущие бренды отдают процесс производства карбоновых удилищ в руки профессионалов, которые занимаются только плетением карбоновых волокон и изделиями из карбона. Конечно, это все стоит денег, и увеличивает цену исходного продукта. Теперь представим ситуацию, когда вы покупаете вроде бы карбоновое удилище, которое стоит ну совсем дешево.

Сразу можете убрать отсюда работы по инженерным расчетам и дизайнеров. Вам просто продают готовую, стандартную заготовку, уберите затраты на маркетинговые исследования и сертификацию производства (самый главный признак отсутствия контроля качества) и так далее.

Репутационные риски заставляют известные бренды подходит крайне ответственно к вопросу качества, тогда как никому неизвестные производители подобных рисков вообще не имеют. Ну закрыл ты эту фирму, открыл завтра новую. Вот и все дела. Вы никогда не узнаете какие конкретно материалы были использованы, какая смола, что ожидать от удилища. Если вы считаете данный риск оправданным низкой ценой, конечно, покупайте. Но разве много у нас людей осознают эти риски? Надеемся, что после прочтения данной статьи, их число хотя бы немножко увеличится.

Полное или частичное копирование без согласования с редакцией портала запрещено

carptoday.ru

что лучше карбон или композит для удочки

Когда рыболов выбирает спиннинг, карбон для бланка является лучшим материалом. Углепластиковые удилища по прочности не уступают стальным, но весят намного меньше.

Что собой представляют карбоновые спиннинги

Карбоновые спиннинги изготовлены из композитного материала, который состоит из углеродных нитей, находящихся в оболочке из смол. Эти нити обладают высокой прочностью. Для изготовления удилища из карбона применяют ткань из углеродных нитей, находящихся под некоторым углом друг к другу. Эта ткань обладает высокой жесткостью и легкостью.

Спиннинг из карбона

Параметры спиннингов из углепластика различаются в зависимости от модульности графита и особенностей изготовления. В состав материала производители добавляют смолы, от качества которых зависит чувствительность, строй удилищ. Так, удочки с быстрым строем содержат меньшее количество смол, а спиннинги с медленным строем — большее их число.

Если сравнивать удочки углепластиковые — какая лучше, сказать сложно, это решает рыболов. Карбоновые спиннинги из хорошего углеволокна бывают цельными, телескопическими и штекерными. От способа распределения пропускных колец зависит наибольшая нагрузка, которую выдерживает спиннинг и дальность заброса наживки. Спиннинги выпускаются с рукоятками различных форм, изготовленных из разных материалов. Углепластиковые удилища оснащаются катушкодержателями, которые имеют свои особенности конструкции.

Спиннинг из карбона

Достоинства и недостатки материала

Спиннинг, изготовленный из карбона, обладает всеми показателями качества данного материала.

Преимуществами карбоновых удилищ являются:

  • легкость;
  • повышенная чувствительность;
  • высокая эффективность.

Достоинства спиннинга из карбона

Рыболов, который применяет карбоновый спиннинг, чувствует даже небольшое движение приманки и может определить осторожную поклевку. Спиннинг отличается высокой упругостью и сбалансированностью, что позволяет осуществлять дальний заброс лески и выдерживать сопротивление крупной рыбы.

Недостатками карбоновых удочек являются:

  • хрупкость;
  • высокая стоимость;
  • необходимость использования кофров для перевозки спиннинга.

Часто рыбаку приходится сравнивать стекловолокно, стеклопластик, фибергласс — что лучше для спиннинга. Опытные рыболовы выбирают из материалов наилучший — композит из углеродных нитей, т. е. карбон.

Таким образом, можно сделать вывод, что при должном уходе углепластиковые удочки являются удобными, надежными и долговечными. В конце рыбалки надо очищать удилища от загрязнений, что продлит срок их эксплуатации.

Наиболее популярны карбоновые спиннинги штекерного вида. Они лучше телескопических по всем характеристикам. Поскольку телескопические карбоновые удочки состоят из нескольких колен, каждое звено увеличивает вес и уменьшает чувствительность снасти.

Единственным достоинством телескопической удочки является ее компактность в сложенном виде, что удобно при перевозке. Тем не менее телескопическое удилище из карбона намного легче и чувствительнее телескопических удочек, изготовленных из прочих материалов.

Телескопический спиннинг из карбона

Выбираем карбоновое удилище

Карбоновый спиннинг нужно выбирать по таким характеристикам:

  1. Вес. Различают изделия ультралегкие — весом до 7 г, легкого класса — весом 7−15 г, средние — весом 15−40 г, тяжелые — более 40 г.
  2. Строй. Спиннинги могут быть: быстрого строя, когда изгибается только конец бланка; медленного строя, когда изгибается весь бланк, начиная от ручки.
  3. Длина. Удилища м.б. размером от 180 до 360 см.
  4. Тест, который является условным весом приманки и составляет от 1 до 20 г.

Поплавочное

Карбоновые поплавочные спиннинги бывают:

  • с глухой оснасткой;
  • маховые;
  • матчевые;
  • английские удилища;
  • штекерные.

Удилищем с глухой оснасткой можно ловить рыбу в сложных условиях, например в заросшем пруду. Здесь нельзя применять изделие с катушкой, т.к. леска будет цепляться за траву. Длина такой снасти должна быть меньше нависающих над прудом ветвей, строй должен соответствовать размеру трофея.

Маховое удилище также не оснащается катушкой. Эта снасть обладает мягким строем. Таким спиннингом пользуются на открытых участках реки. Снасть позволяет с легкостью забрасывать приманку в одно и то же место. Английская удочка оснащается катушкой и применяется для проводной ловли на течении. Конструкция не должна быть слишком гибкой.

Карповое

При выборе снасти надо учитывать условия ловли. При этом нужно брать во внимание не чувствительность изделия, а его способность противостоять сопротивлению крупной рыбы. Надо учитывать расстояние заброса.

Карповые удочки выполняют заброс больше, чем на 50 м.

Это требует использования тяжелых снастей, что определяет соответствующий выбор теста таких удочек. Многие рыболовы при выборе изделия учитывают его стоимость. Карповое удилище выбирают по таким параметрам:
  • условия ловли;
  • стоимость оснастки;
  • наличие данного вида изделий в магазинах.

Фидер

Фидерные удилища, по сравнению с карповыми, более универсальны. Они могут состоять из 2−3 секций, в комплекте к ним имеются тонкие чувствительные вершинки. Для фидерной удочки они играют роль сигнализатора клева. Бланк изготавливают из карбона, а вершинку из стеклопластика, т.к. этот материал менее хрупкий. Фидеры можно применять для дальних забросов и ловить на них крупную рыбу.

Карбоновые вершинки для фидера

Их используют для ловли на течении. Для ловли крупных рыб нужны удочки класса «хэви» с максимальным весом оснастки от 100 г. Несмотря на высокую мощность удилищ, чувствительные вершинки могут различить осторожную поклевку.

Сейчас изготавливают фидерные удочки для ловли карпа и белого амура. Это недорогие чувствительные снасти, которые обладают высокой эффективностью.

Рейтинг лучших карбоновых спиннингов

Mikado X-plode — штекерный карбоновый спиннинг. Его длина 2,4 м, тест 5−23 г, вес 176 г, медленный строй. Используется для рыбалки на блесны.

Kosadaka Voyager Tele 210 M — удочки телескопические, карбоновые; имеют размеры: длина 2,1 м, длина в сборке 0,8 м, тест 10−30 г, быстрый строй. Ввиду компактных размеров в сложенном виде отличается удобством транспортировки.

Shimano Dialuna — дорогие спиннинговые карбоновые удилища. Длина 2,59 м, быстрый строй, тест 5,21 г, вес 126 г. Это мощный бланк, который позволяет ловить рыбу крупных размеров.

Shimano Dialuna

Sams Fish — маховое удилище карбоновое, 6 метров, количество секций — 7, длина в сложенном виде — 112 см, тест 5−30 г, вес 276 г. У этой конструкции быстрый суперчувствительный строй, удобная рукоятка, высокая прочность.

ribaku.info

какая лучше – из углепластика или карбона, основные отличия

Карбоновые телескопические удочки, несмотря на ряд особенностей конструкции, пользуются стабильной популярностью среди рыболовов, в первую очередь, из-за удобства транспортировки. Максимальное распространение получили маховые и болонские удочки телескопической конструкции, однако часто встречаются спиннинги, а также карповые удилища подобного рода.

Плюсы и минусы телескопов

Карбоновое удилище имеет ряд преимуществ по сравнению с другими материалами изготовления бланков. Углеволокно обладает высокой прочностью при минимальном весе, а также обладает «звонкостью», которая так важна в спиннинговой ловле для распознавания осторожных поклевок. Однако не обходится и без недостатков. Карбон требует бережной транспортировки, так как боится ударов, также подобные удочки обычно дороже композитных или углепластиковых.

Остальные материалы имеют следующие отличия:

  • Стеклопластик. Имеет максимальный запас прочности, а также устойчив к довольно небрежной транспортировке. Большинство бюджетных удилищ изготавливаются именно из стеклопластика, так как процесс производства в таком случае несколько проще, а сам материал дешевле. Однако сравнительно большой вес готового изделия, а также невысокая чувствительность являются существенными недостатками.
  • Композит. Материал является сочетанием карбона, стеклопластика и связующих смол в разных пропорциях. Сочетает в себе как преимущества, так и недостатки карбона и стеклопластика – готовые изделия дешевле и несколько прочнее чем из углеволокна, чуть выше и чувствительность, чем в чисто стеклопластиковых бланках.

Читайте также:

Виды удилищ по типу ловли

Наибольшее распространение среди отечественных рыболовов получили маховые, а также болонские телескопические удилища. Несколько реже встречаются спиннинги подобной конструкции, и совсем уж редкое явление штекерные (так как сам способ ловли пользуется популярностью, в первую очередь, среди спортсменов) и карповые удилища.

Спиннинги

Многие спиннингисты несколько пренебрежительно относятся к удилищам телескопической конструкции. Наличие большого количества соединений делает строй более медленным, что не нравится любителям сверхбыстрых бланков, также этот фактор отрицательно влияет на чувствительность. Однако для ряда спиннингистов компактность удочки в транспортировочном состоянии оказывается решающим фактором – короткие спиннинги длиной 1,6–1,8 метра в сложенном состоянии запросто помещаются в рюкзак. Такая компактность особенно важна в случаях, если к точке ловли долго добираться либо же когда к месту ловли необходимо пробираться через густые заросли.

Удилище с отделяющейся рукоятью
Совмещение телескопической и штекерной конструкции в одном удилище позволяет достичь максимальной компактности в сложенном состоянии.

Поплавочные маховые

Эта группа, вместе с болонскими удилищами, может считаться наиболее популярной среди рыболовов. Небольшой вес карбонового удилища, вместе с длиной от 4 до 6 метров позволяют с комфортом облавливать большинство перспективных прибрежных точек. Отсутствие катушкодержателей и самой катушки, пропускных колец и прочих элементов делает такую снасть максимально легкой, в особенности если удилище изготовлено из карбона без примесей стекловолокна. Быстро менять оснастки помогает специальный коннектор, который устанавливается на вершинку удилища. Важно учитывать, что вываживать крупную рыбу подобным удилищем не так-то просто, отсутствие катушки с фрикционным тормозом предъявляет повышенные требования к навыкам и опыту рыболова.

Штекерные киты

Штекерные удилища отличаются от всех остальных огромной длиной. Некоторые топовые спортивные модели могут превышать 16 или даже 18 метров в длину, что позволяет облавливать большинство перспективных точек. Именно в случае со штекерной рыбалкой преимущество карбона – минимальный вес проявляется максимально ярко. Углепластиковым удилищем такой длины просто невозможно было бы работать.

Не все штекерное удилище имеет телескопическую конструкцию. Штекерная удочка – это, по сути, набор карбоновых трубок разного диаметра. Комлевые трубки, или базовая основа, соединяются либо надеванием верхней, более тонкой трубки, на нижнюю, либо верхняя трубка вставляется в нижнюю.

Телескопическую конструкцию имеет только кит – верхняя часть удилища, которая надевается на основу. Обычно у рыболова в запасе должно быть несколько китов разной длины с разными оснастками, для того чтобы приспособиться к условиям ловли на конкретном водоеме. Внутри кита также крепится специальная резина, которая подбирается индивидуально под размеры рыбы на водоеме и позволяет не беспокоиться об обрыве тонкой оснастки на вываживании.

Штекерный комплект
Штекерные удилища могут быть очень большой длины, однако новичку нет смысла гоняться за самыми длинными удочками.

Важно! Достаточно тонкие стенки карбоновых трубок, из которых состоит штекерное удилище, особенно уязвимы к ударам. Перевозить их стоит исключительно в жестких тубусах или ящиках.

Длина удилищ в зависимости от условий ловли

Длина карбонового телескопического удилища подбирается под условия рыбалки, а также зависит от вида ловли. В случае со спиннинговыми бланками для рыбалки в условиях стесненного пространства (в том числе при ловле с плавательного средства), на малых реках, а также там, где на берегу из-за густой растительности нет места для заброса, подойдут компактные варианты 1,6–1,8 метра. Если есть необходимость более дальних бросков, а берег позволяет работать с более длинной снастью, выбирают удочки длиной 2,0–2,4 метра, ну а для сверхдальних забросов, к примеру, при ловле жереха или рыбалке на сбирулино, стоит искать 3 метровые спиннинги.

В случае с маховыми и болонскими удилищами оптимальным вариантом считается длина от 4 до 6 метров. В таком случае и до большинства перспективных точек можно добросить, и само удилище остается достаточно легким. Для ловли небольшой рыбы практически под ногами существуют так называемые «уклеечные» удилища длиной от 2,4 до 3 метров.

Штекерные бланки отличаются максимально возможной длиной среди всех удилищ. Однако начинающему рыболову не стоит сразу брать 16 или 18 метровую модель, так как справиться с такой снастью те так просто. Для большинства водоемов и условий ловли начинающему рыболову вполне достаточно будет и 9 метрового штекера, который будет проще в обращении и гораздо дешевле, чем более длинные варианты.

Бланки с кольцами и без них

Карбоновые бланки без колец – это, в первую очередь, удилища для маховой поплавочной ловли. Такая особенность, вместе с материалом изготовления, обеспечивает удочке минимальный вес, что особенно важно при длительных рыболовных вылазках. Не имеют колец и штекерные удилища, так как в таком случае используются свои, специфические для этого вида ловли варианты оснасток. Болонская же снасть, также, как и карповая, а также спиннинговая, подразумевает обязательное наличие пропускных колец, тут они не только направляют леску, но и разгружают бланк при вываживании крупной рыбы, а их расположение и вес могут существенно влиять на строй удилища (к примеру, тяжелые массивные кольца могут сделать удилище несколько более медленным).

Бюджетные варианты телескопов

Телескопические модели удилищ имеются в модельных рядах подавляющего большинства производителей рыболовных принадлежностей. Salmo TAIFUN TELE CARP 300 – неплохой вариант для желающих приобщиться к карповой ловле. И также стоит отметить такие удочки:

  • Flagman Cast Master Pole 5 м.
  • Shimano CATANA CX TELESPIN.
  • Salmo Taifun Tele Pack.
  • Siweida SWDE xplorer 2.
  • Mikado Desire Mini Tele Spin.

Топовые модели телескопов

Телескопические карбоновые удочки в топовом ценовом сегменте представлены несколько меньшим разнообразием, чем варианты штекерной конструкции, что особенно заметно на примере спиннинговых удилищ. Однако ведущие производители снастей и тут могут предоставить определенный выбор.

Стоит выделить такие модели:

Black Hole Atomic Bolo
Представитель топовых болонских удочек – Black Hole Atomic Bolo.

Как выбрать удилище

Определившись с типом, длиной и конкретной моделью удочки, следует внимательно осмотреть ее перед покупкой. Особое внимание стоит уделить кольцам – вставкам, а также тому, как приклеены ножки колец – нет ли наплывов, не растрескался ли лак (в бюджетных моделях бывает тюльпан оказывается приклеенным набок).

И также следует осмотреть удилище на предмет сколов и трещин, особенно внимательно при этом стоит исследовать места стыков отдельных секций телескопического бланка.

Особенности эксплуатации

Главная особенность этого материала – плохая устойчивость к ударам. Рыболовами описываются случаи поломки удилища даже вследствие удара нетяжелой оснасткой (прежде всего спиннинговой – джиговой или воблером) по бланку после отстрела при зацепе. Поэтому карбоновые удочки требуют не только бережного обращения в процессе ловли, но и при транспортировке. В идеале такие бланки нужно перевозить в жестких тубусах, что убережет удочку от ударов во время перевозки, а также в походе к точке ловли.

В случае с телескопической конструкцией удилища должное внимание следует уделять чистоте после рыбалки. Дело в том, что песок или грязь, попав в стыки удочки, будут действовать как абразив при каждом складывании-раскладывании снасти, что через определенное время может привести к выходу удилища из строя, поэтому стыки необходимо держать в идеальной чистоте.

Телескопические удилища, несмотря на все свойственные такой конструкции особенности и недостатки, достаточно прочно закрепились как на прилавках рыболовных магазинов, так и в арсенале рыболовов. Удобство транспортировки в ряде случаев перевешивает возможные недостатки.

intellifishing.ru

Графит и карбон. Модульность удилищ.

Все современные спиннинги делаются полыми либо из углепластика, либо из стекловолокна, либо из их композиции (смеси). Следует помнить, что углепластик, графит, карбон — это одно и то же. Удилища из стеклопластика наиболее гибкие и тяжелые, с небольшим модулем упругости. Углепластиковые — самые легкие, жесткие и посылистые, с большим модулем упругости. Но они более хрупкие, чем стеклопластиковые и требуют, соответственно, более бережного обращения. Средние по жесткости и наиболее распространенные — это удилища, сделанные из композита (к графитовым волокнам добавляются волокна из стеклоткани). Встречаются также удилища с добавлением кевлара (прочнейший материал, из которого изготавливают бронежилеты). 

Сегодняшние высокомодульные графитовые удилища не так прочны, как удилища, сделанные из низкомодульных волокон несколько лет тому назад. Но уменьшение прочности это не результат «хрупкости», как может показаться. Первые сорта графита, используемые для изготовления рыболовных удилищ, имели более высокую модульность, хотя и меньшую пластичность, чем стекловолокно. Однако их уровень эластичности был более чем достаточен для обеспечения адекватной прочности, и их высокий модуль упругости делает их экстремально чувствительными. На заре изготовления графитовых удилищ было тяжело достигнуть успеха даже с высокомодульными графитами потому, что при возрастании модуля упругости уменьшается пластичность. Больше углеволокна — больше жёсткость, но и хрупкость тоже, вот что предлагалось. 

Но углеволокно, известное как IM6, всё изменило. У IM6 не только выросла модульность, но и пластичность тоже достаточно высока. Сразу стало возможно облегчить изделия, увеличить чувствительность удилища без потери прочности из-за хрупкости. Большинство высокомодульных графитовых волокон, используемых в бланках сегодня, имеют модульность и пластичность выше, чем IM6. Таким образом, было бы некорректно сказать, что они более хрупкие, даже при сравнении ранних графитов и стекловолокна. Всё ещё нет сомнения, что легче сломать высокомодульное графитовое удилище, чем стеклопластиковое удилище. 
Но если они не более хрупкие, в чём же дело? Ответ довольно прост. Используя волокно, которое жёстче при том же весе, нет необходимости использовать столько же материала, достигая той же жёсткости, как было бы необходимо при использовании волокна меньшей модульности. Таким образом, сейчас мы имеем меньше материала в бланке, который обычно имеет при этом тонкие стенки. Более тонкие стенки не позволяют выдерживать те же нагрузки при ударе, как более толстые. Да, мы можем уменьшать диаметр и толщину стенок, но вы потеряете некоторую жесткость, поступая подобным образом и добавив больше волокна, улучшите эти … хорошо, мы просто начнём с начала до этой точки. 
Установленный факт, что большинство современных высокомодульных удилищ не хрупки, но они имеют более тонкие стенки, нежели их предшественники несколько лет назад. Они разработаны для получения высочайшего уровня эксплуатационных характеристик, в то же время позволяя надеяться на адекватную прочность. 
Если вы или ваши клиенты ломаете много удилищ вами сделанных и это высокомодульные удилища, скорее всего это происходит вследствие неправильного обращения с удилищем. Если не заботиться хорошо об удилище при хранении и эксплуатации, то я бы советовал опуститься к низкомодульным сериям бланков, которые лучше выдерживают удары и падения. Как и во многих других случаях, вы должны пойти на компромисс в одних характеристиках для достижения других. С очень высокомодульными удилищами вы теряете способность к падениям и ударам, но зато приобретаете более эффективный рыболовный инструмент. В другом случае, вы найдёте серии бланков, которые будут выдерживать испытания и вы должны решительно взять их, но, понимая, что это увеличение прочности будет ценой за характеристики. 

Лучше вовсе отказаться от спиннингов из стекловолокна, поскольку их большой вес и сравнительно малый модуль упругости притупляют чувство проводки. Опять же вы можете мне возразить: всю жизнь ловим «стеклом» и никаких проблем! Чтобы убедиться, что проблемы все-таки есть, достаточно попробовать в деле качественный «углевый» спиннинг. Сразу бросится в глаза, насколько четче ощущается проводка, и будет гораздо меньше «слепых» поклевок. 

Углепластик, при высоком его модуле, обладает и другими важными преимуществами перед «стеклом» и композитом. Возьмите произвольное удилище и встряхните его, как бы выполняя заброс. Как только движение руки остановится, вершинка спиннинга кивнет вперед и выпрямится. По тому, как это происходит, можно делать выводы о достоинствах удилища. 

Если встряхивание удилища рождает несколько размашистых переколебаний, что типично для многих «стеклянных» спиннингов и некоторых графитовых, воздержитесь от покупки такого удилища. В некоторых случаях склонность к переколебаниям сознательно заложена в строй, однако чаще она является паразитным свойством удилища — когда недостаточный модуль используемого материала не позволяет ее избежать. 
Считается, что «стекло» (и удилища из низкомодульных материалов вообще) лучше себя проявляет с теми типами приманок, которые предназначены для равномерной проводки. «Стеклянный» спиннинг не рвет рыбе губу и обладает определенными преимуществами при вываживании. Даже и среди «стекла» наблюдается широкий разброс по модулю упругости — от 6 млн. (E-glass) до 13 млн. (S-glass). Однако для наших с вами задач нужен модуль от 30 млн. единиц и выше, который недостижим для «стекла», но является вполне обычным для углепластика. 
В прежние времена чувствительным называли удилище, которое главным образом по зрительному восприятию передавало максимум информации о происходящем с приманкой — ее ход, игру и, разумеется, поклевку. Зрительное восприятие касалось прежде всего самого кончика спиннинга — именно он служил основным индикатором проводки и поклевки. Непосредственно в руку, держащую удилище, что-то если и передавалось, то в очень и очень ослабленном виде…. 
Собственно, и сейчас кончик спиннинга остается для нас одним из источников информации, но роль его уже отнюдь не исключительна. С появлением и совершенствованием «углевых» удилищ все большее значение стало приобретать не визуальное, а мышечное восприятие проводки и поклевки рыбы. 
По-настоящему чувствительный спиннинг дает возможность без напряжения, не глядя на вершинку и на леску, отчетливо ощущать все происходящее с приманкой. Это качество очень важно отнюдь не только для ловли, например, в темное время или для людей с неидеальным зрением. Чувствительность «в руку» делает процесс ловли более комфортным и менее утомительным, особенно когда речь идет о ловле на джиг. Кроме того, восприятие через мышечные рецепторы значительно сокращает интервал времени между поклевкой и подсечкой. И это уже не только практический рыболовный опыт, но и данные нейрофизиологической науки. Рука реагирует быстрее на то, что она непосредственно ощущает, нежели когда в роли приемника информации выступает глаз… 
Насколько все это серьезно — попробуйте решить для себя сами. Все-таки спиннинги с чувствительностью «на глаз» были, есть и будут. Тем более что основная их масса принадлежит к недорогому, или народному, классу. Если же вы склоняетесь к выбору удилища с чувствительностью «в руку», то здесь надо иметь в виду несколько принципиальных моментов. 
Первое. При прочих равных условиях более чувствительным будет тот спиннинг, бланк которого изготовлен из более модульного материала. Под модулем изначально подразумевается известный из школьного курса физики модуль упругости Юнга. 
Наверное, нет особой необходимости лишний раз пояснять, что это такое — кто знает, тот в том не нуждается, кто не знает, тому оно вроде как и не интересно. Однако здесь стоит сделать одно существенное замечание. Разные фирмы, поставляющие на рынок спиннинговые удилища, пользуются разными системами количественной оценки модульных характеристик своих удилищ. Иными словами, впрямую сравнивать по заявленной модульности можно только удилища от одной фирмы. 
Что еще важно — модуль упругости это внутренняя характеристика исходного материала бланка. То, что получается на выходе (то есть готовые удилища) при одинаковом исходном модуле могут иметь существенно разную чувствительность, поскольку она зависит и от других факторов. 
Второе. С увеличением модуля графита возрастает его цена и обостряется вопрос «выживаемости»: спиннинг из высокомодульного «угля» требует к себе более аккуратного обращения. Попытки создать одновременно дешевое и «звонкое» (то есть чувствительное за счет модульности) удилище, как правило, не очень удачны. В последнее время на рынке появилось изрядное количество китайских удилищ этого рода, которые, вроде бы, производят приятное начальное впечатление, но вот статистика поломок по ним в итоге оказывается просто неприличной. 

Некоторые вопросы конструкций удилищ 

Выбор подходящего спиннинга это проблема, решаемая по разному: в лоб по принципу — чем дороже, тем лучше, по степени доверия к фирме, по чьему-то совету или по собственной интуиции. Цена вопроса в денежном эквиваленте довольно высока, а информации крайне мало. Ассортимент в магазинах огромен и при этом отсутствует единая классификация. Единственный параметр, предлагаемый покупателю это массовый тест, но не все хорошо представляют себе, что это такое. Основные параметры конструкционных материалов хлыста нигде не сертифицируются. Каждая фирма — изготовитель естественно предлагает самое-самое. Специалисты говорят разное: одни, что должен быть параболический строй другие, что бывают удочки быстрые или не очень, а один сказал, растопырив пальцы, что это должно быть черным и тока от Гарри Лумиса, ну типа как у меня. Конечно, серьезные фирмы считают свои хлысты, но информацией не делятся, видимо имея на то причины, которых позже слегка коснемся. 
Кроме эстетического услаждения своего владельца (что тоже конечно крайне важно) у любого удилища есть две функциональные обязанности — это заброс приманки и вываживание добычи. Последняя самая радостная стадия, как и большинство систем с биологическими объектами практически не поддается расчетам из-за многовариантности поведения последних. Описывая процесс качественно можно сказать, что ввиду наличия даже малого момента инерции у шпуль катушек всех типов растягивающее усилие на леске при резком рывке может значительно превышать установленное на тормозном фрикционе. Амортизацию таких рывков производит упругая конструкция хлыста, а вот доверять ситуацию полностью тормозам катушки можно только имея двух — трех кратный запас разрывной прочности. 

Для производства современных спиннингов и нахлыстовых удилищ применяются композиционные материалы. Упрочнителями служат волокна: стеклянные, углеродные, борные и их разнообразные сочетания, уложенные слоями под разными углами. Содержание их в материале достигает 60 — 80 об %. Прочность и модуль упругости композита определяется свойствами упрочнителя. Матрица только связывает композицию, придавая ей форму. Как правило, это полимер: чаще всего встречаются эпоксидная фенолоформальдегидная или полиамидная матрица. 
Ранее других появился ориентированный стеклопластик. Его недостаток это невысокий модуль упругости: Е ~ 60 Гпа, 0,6*105 h/mm2. Материал обладает высокой выносливостью на изгиб до 2*107 циклов, хорошим относительным удлинением при разрыве ~ 2 % технологичен и дешев. Его применение, на мой взгляд, полностью оправдано для удилищ с массовым тестом > 50 гр. 
Карбоволокниты (углепласты) содержат углеродные волокна иногда с примесью стекловолокон. Модуль упругости на растяжение Е=150 — 200 Гпа, 1,5-2,0*105 h/mm2. Относительное удлинение при разрыве около 0,5 %. Обладают высокой электропроводностью. Устойчивы к воздействию агрессивных сред и излучения. Высокое статическое и динамическое сопротивление усталости сохраняется при нормальной и очень низкой температуре (высокая теплопроводность предотвращает саморазогрев за счёт внутреннего трения). Недостаток — технологически сложный процесс изготовления и соответственно высокая себестоимость. 
Бороволокниты (упрочнитель — борные волокна) отличаются высокой прочностью Е > 200 Гпа, 2,0*105 h/mm2 и твердостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей. Относительное удлинение на разрыв около 0,4%. Полупроводник. Для облегчения технологического процесса применяются комплексные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью придающей формоустойчивость. 

В заключение интересно привести значения модуля продольной упругости для некоторых материалов: 

Сталь 195 / 210 Гпа 1,95 / 2,1*105 h/mm2 

Алюминий 70 Гпа 0,7*105 h/mm2 

Дерево 10 / 12 Гпа 0.1/0.12*105 h/mm2. 

Таким образом, видно, что композиты по удельной жесткости (жесткость на единицу массы) в несколько раз превосходят обычные материалы. На практике это показатель, определяющий вес удочки с заданной жесткостью, которая достигается необходимой толщиной стенок полого трубчатого хлыста. Сравнивая между собой композиты, надо отметить, что углепласт на четверть легче бороволокнита, а это полностью компенсирует его меньший модуль упругости. Другой путь повышения жесткости конструкции не приводящий к увеличению веса лежит в увеличении наружного диаметра самой трубки. Следует отметить снижение величины относительного удлинения при разрыве с увеличением модуля упругости (удельная прочность однонаправленного стекловолокна в несколько раз выше бороволокна), что означает уменьшение допустимого угла изгиба удилища и накладывает ограничения на предельный внешний диаметр. Проще говоря, высокомодульный углепласт сломать намного проще дешевой удочки из стекловолокна, низкий модуль упругости которого можно компенсировать увеличением геометрии конструкции. В отношении бамбуковых удилищ вопрос сложнее, но преимущество синтетики это технологичность и инертность ко всякого рода воздействиям. 
Изгибаясь самым невероятным образом, спиннинг работает в предельных режимах многократной деформации. Современные композиционные материалы допускают несколько миллионов подобных циклов и тысячи часов длительного изгиба. К сожалению подобного нельзя сказать о декоративных покрытиях, которые к тому же ухудшают упругие свойства или попросту скрывают дефекты самого бланка. По условиям эксплуатации на рыбалке композиты не нуждаются в защите. От механических повреждений хорошо предохраняет тубус и бережное отношение. Самая прочная конструкция с точки зрения теории должна иметь ровную полированную естественную поверхность. 

Модуль: чем больше, тем лучше. 

Прежде, чем рассматривать, как величина модуля волокон влияет на свойства спиннинга необходимо понять, что же собственно представляет собой этот модуль? 

Определение из учебника по сопротивлению материалов: Коэффициент пропорциональности Е, связывающий нормальное напряжение и относительное удлинение, называется модулем упругости. 

Другими словами, чем больше модуль, жестче стержень при тех же размерах. 

В международной системе единиц модуль Е измеряют в тех же единицах, что и механическое напряжение или давление, т.е. в Па (паскаль). Поскольку численные значения модуля весьма большие, для компактности записи применяют приставку Г(гига), означающую миллиард. Пример модулей упругости материалов: стекловолокно 95-100 ГПа, сталь 195-205 ГПа, углеродное волокно 216-677 ГПа, вольфрамовая проволока 420 ГПа. 

Модуль упругости материала численно равен механическому напряжению, которое необходимо создать в стержне, чтобы растянуть его в два раза. 
А как влияет величина модуля волокон на свойства спиннинга? 
Если критерием качества спиннинга считать модульность исходного материала, то спиннинги, изготовленные из стали и низкомодульного углеродного волокна будут обладать одинаковыми свойствами. Очевидно, что это не так. 

Критерием качества материала для спиннинга является не величина модуля упругости и прочность, а отношение этих величин к массе, т.е. удельная прочность и удельная жесткость. По указанным параметрам углеродные волокна превосходят лучшие стали и титановые сплавы в несколько раз. 

Чтобы наглядно представить, как влияет модуль на свойства бланка, проведем мысленный эксперимент. 

Представим себе некоторый бланк, изготовленный из материала модулем, равным скажем Е некоторых единиц. Предположим, что мы приложили к нему максимально допустимую нагрузку, и он получил некую деформацию. Если модуль материала спиннинга увеличить в два раза, то под воздействием той же нагрузки он деформируется в два раза меньше, а накопленная потенциальная энергия уменьшится в четыре раза. Если попытаться деформировать спиннинг до прежней величины, то он сломается. В конечном результате мы получим спиннинг с более узким тестовым диапазоном, поскольку верхняя граница теста не изменится, а нижняя сильно возрастет. 

Если одновременно с модулем увеличить вдвое прочность материала, то увеличится верхняя граница теста, и мы получим более совершенный спиннинг, но в другом весовом классе. 

Чтобы вернутся к исходному весовому классу, мы можем уменьшить диаметр бланка или толщину стенок. При тех же упругих и прочностных свойствах мы получим боле легкий и, следовательно, более быстрый бланк. 

Отсюда вывод: увеличение модуля упругости материала бланка оправдано только при одновременном увеличении прочности. 

Структура углеродного волокна зависит от исходного сырья, состава макромолекул, степени вытяжки волокон, технологии их получения и многих других параметров. В связи с этим углеродные волокна, получаемые из разных синтетических волокон, имеют разное соотношение модуля упругости и прочности. Величина модуля упругости никак не связана с прочностью волокна. 

Но даже лучшее углеродное волокно – это просто пучок ломких нитей. Чтобы получить из отдельных нитей высокопрочный материал, их необходимо соединить в одно целое посредством связующего вещества. Свойства конечного материала будут очень сильно зависеть от технологии укладки, уплотнения степени ориентированности и еще многих других параметров, определяемых технологией изготовления. Причем модуль упругости получаемого углепластика практически не изменится, а вот прочность, особенно удельная, целиком определяется технологией изготовления бланка. 

Очень важно понимать тот факт, что жесткость удилища определяется не только модулем упругости материала, но и наружным диаметром, толщиной стенок и длиной. 

Т.е. жесткость удилища определяется как модулем материала, так и геометрией бланка. 

Важнейшее прочностное свойство углепластика – ударная вязкость, т.е. способность противостоять ударам целиком определяется технологией изготовления бланка и никак не зависит от изначальных свойств волокон 

Углеволокно имеет определённые показатели прочности и способности сопротивляться растяжению. От способов производства углеволокна зависят эти характеристики. Но бланк — это композиционный материал, состоящий из углеволокна и связующего. Вторая часть не менее важна, чем первая, равно и характер их взаимодействия (адгезия и прочая). Но об этой второй части производители молчат в большинстве случаев. Ну представьте: вы строите 9-этажный дом из монолитного бетона. И будете покупателям квартир рассказывать, что у вас стоит титаново-углеволоконная арматура, аналогов которой нет. А бетончиком-то её завливаете марки М50, который пальцем ткни — рассыплется. Так и со всеми этими IM6-IM10. 

Выводы: 

1. Жесткость бланка, модуль упругости материала бланка и модуль упругости исходных углеродных волокон – это совершено разные характеристики. 

2. Высокий модуль материала без высокой прочности бесполезен. 

3. Увеличение модуля упругости материала бланка имеет смысл при одновременном увеличении прочности. 

4. Высокая удельная прочность важнее, чем высокий модуль. 

5. Величина модуля и прочность материала никак не связаны между собой. 

6. Величину удельной прочности производители указывают. 

7. Свойства бланка гораздо больше зависят от технологии изготовления и конструкции, чем от изначальных свойств углеволокна. 

8. Для спиннингистов – практиков знание этих параметров не обязательно, и даже вредно, поскольку затуманивает объективное восприятие качества бланка. 

Окончательный вывод: величина изначального модуля упругости углеродных волокон, без указания других параметров не дает никакой информации о свойствах бланка. 

И, наконец, информация для размышления: материалы, из которых изготовлены консервная банка и лезвие хорошего ножа, имеют одинаковый модуль упругости

rubalok-lubutel.ucoz.com

menstois.ru

Почему карбон не используется в массовом автопроме — Автомобили

Карбон – народное название, транслитерированное с английского слова carbon – уголь, которое в свою очередь было заимствовано еще из латыни. Углепластик представляет собой полимерный композиционный материал, состоящий из нитей углеродного волокна, переплетенных под определенным углом — как шерсть в свитере. Только очень прочный, с высокой степенью натяжения, низким весом и низким температурным расширением. Из-за его дороговизны композит может применяться как усиливающее дополнение, например, к стали — тогда материал получит приписку «усиленно углепластиком», CFRP.

Зона применения

Свою блистательную карьеру карбон начал с ракетных двигателей, а сегодня применяется в самых различных сферах — от производства удочек до самолетостроения. И в автопромышленности — не в последнюю очередь, прежде всего, в структуре кузова, а также элементах отделки экстерьера и интерьера.

Углепластик хорош тем, что обладает высокой прочностью, жесткостью и малой массой — он прочнее алюминия и легче стали, оказываясь более эффективным материалом. У кузова, изготовленного с применением композита, больше жесткость на кручение, что играет на руку безопасности автомобиля, и выше стойкость к коррозии. Даже применение части карбоновых деталей, даже только в отделке интерьера, снижает массу автомобиля, а значит, повышает топливную экономичность и динамические характеристики. При массовом применении повысилась бы и общая безопасность на дорогах при авариях, а также безопасность пешеходов.

Да и просто карбон считается красивым и стильным материалом — ведь спросом пользуется даже имитация «под карбон», которую с удовольствием используют в деталях и интерьере недешевых машин. Что уж говорить о пленке «под карбон», которая не добавляет кузову ни прочности, ни легковесности.

Однако из-за своей дороговизны углепластик далек от рынка массовых автомобилей и используется только в эксклюзивных дорогостоящих моделях, а также автоспорте. Но почему этот материал в прямом смысле «на вес золота»?

Дорогое производство

Окончательный ценник автомобиля в автосалоне складывается из сотни факторов: необходимость окупить затраты на создание идеи и разработку проекта, зарплаты дизайнеров и маркетологов, стоимость рекламы и имидж бренда. И мы можем только догадываться, насколько отличается себестоимость автомобиля от его покупательской цены.

Затраты на производство кузова с применением углепластика, его обработка и сборка мало чем отличаются от той же стали. Однако причина дороговизны композитной автомобильной детали объективна — дорог сам материал. Стоимость сырья составляет 20 долларов за килограмм, в то время как килограмм стали обойдется менее чем в один доллар.

Во-первых, из-за высокого спроса (например, из-за широкого применения в самолетостроении) на рынке наблюдается дефицит волокна, что также играет на его подорожание.

Во-вторых, сам процесс производства углеволокна очень трудоемкий и дорогостоящий. Итак, начинается все еще с нитей, из которых «вяжется» карбоновая пластина. Углеродные волокна получают за счет термической обработки химических и природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Сначала происходит окисление исходного волокна – на воздухе при температуре 250 градусов Цельсия в течение 24 часов, потом стадия карбонизации — нагрев волокна в среде азота или аргона при температуре от 800 до 1500 градусов Цельсия, а затем графитизация в инертной среде при температуре 1600-3000 градусов. В результате количество углерода в волокне доводится до 99%.

И на выходе одно только стартовое сырье становится в два раза дороже, чем исходный материал, так как половина элементов просто сгорает. Не считая расходов на специализированное оборудование и затрачиваемую энергию — представьте, сколько это стоит при обработке в перечисленных выше условиях и температурах, да и сами автоклавы (оборудование) значительно дороже. Более того, нужно избавиться от исключенных элементов, а утилизация этих «отходов производства», не вредящая окружающей среде, еще один важный пункт в счете расходов.

И это мы только сделали нити, а ведь из них еще надо «сплести полотно», которое и будет обладать той удивительной прочностью. И прежде всего, придется убедиться, что все нити одинаковы и равномерно растягиваются, иначе в полотне какие-то из них будут более уязвимы, а следовательно, сломаются. Так что необходимы сложные и дорогостоящие меры контроля качества изделий — в случае ошибки при производстве материал окажется хрупким, а не суперпрочным.

Затем нити работают с термоактивными смолами, которые их «склеивают», в результате и получается композит. Эти смолы также дороже обычных. А ведь композиту еще нужно придать форму, что занимает около часа — очень долго, если сравнивать с тем, как быстро штампуются кузовные панели из стали. Деталь из углепластика производится двумя способами. При прессовании углеткань выстилается в форму, смазанную антиадгезивом (например, мылом), пропитывается смолой, излишки смолы удаляются в ваккуме или под давлением, смола полимеризуется. Второй вариант — контактное формование: берется исходная деталь (например, металлический бампер), смазывается разделительным слоем, сверху напыляется монтажная пена. После затвердевания слепок смазывают разделительным слоем и выкладывают пропитанную углеткань, которая прокатывается, полимеризуется и затем снимается.

И наконец карбон, несмотря на свою прочность, уязвим для точечных ударов, а треснувший углепластик плохо пригоден к ремонту. Невидимые глазу внутренние трещины и расслоения приводят к снижению плотности. Скорее всего, поврежденную композитную деталь автомобиля придется заменять.

Вот что рассказал порталу «АвтоВзгляд» директор по послепродажному обслуживанию «Ауди Центр Восток» Алексей Кирдяшов:

— Высокая стоимость углепластика объясняется в первую очередь тем, что для изготовления карбона требуются высококачественные дорогостоящие компоненты и используется сложный процесс производства. На цену материала также влияют его уникальные характеристики — прочность и легкость. Это естественно, что за такое «ноу-хау» и эксклюзивные свойства продукта производители делают наценку, объясняя это тем, что карбон — будущее в автомобилестроении, авиастроении, изготовлении электроники, строительстве и многом другом. Продукт пользуется спросом, но еще не используется массово из-за своей стоимости…

Путь к удешевлению

Но коль дорого стоит производство, а не сам «алмаз», то его можно удешевить, упростив и удешевив технологию получения углеволокна. И, судя по последним заявлениям, производители композитов уже близки к этому. Ради совершенствования технологий производства карбона создан специальный немецкий проект MAI Carbon, на который работает более 70 компаний, институтов и лабораторий, в том числе Audi и BMW. И по словам его руководителя Клауса Дрекслера, затраты на производство углеволокна могут быть снижены на 90%. В результате композит может стать значительно дешевле, а значит, доступным для массового автомобильного производства. А при увеличении объемов производства кузова из углепластика станут стоить столько же, сколько стальные, и появятся у дешевых автомобилей.

По словам Дрекслера, для удешевления и ускорения производства нужно сделать процесс более автоматизированным. Подробностей участники проекта пока не раскрывают, однако в качестве реального примера можно вспомнить литиевые батареи, которые в последние годы удается делать все более доступными. Пассажирская клетка электрокара BMW i3 выполнена из композита, а ведь это уже массовая модель.

Например, технология струйного переноса сухой смолы, разработанная и запатентованная австралийской компанией Quickstep на средства правительства, уже позволяет автоматизировать изготовление кузовных панелей. Робот распыляет смолу особого состава в сухом виде, что позволяет избавиться от дорогостоящей подготовки жидкой смолы. Анализируется применение в качестве карбонового сырья лигнина, который получают из древесины и который по прочности на сжатие соответствует бетону, или подогрев при помощи плазмы. Ищут способы заставить углепластик работать с термопластиковыми смолами, что может удешевить производство на 60-70% и упростить устранение ошибок.

Похоже, революция на пороге. 

www.avtovzglyad.ru

Материалы удилищ

Несколько десятилетий тому назад выбирать удилище было довольно просто, что связано с банальной на то причиной: сам ассортимент был достаточно скуден. В настоящее же время в специализированных магазинах продаётся огромное количество самых разных удилищ, которые отличаются между собой по техническим характеристикам и конкретному предназначению.

Ещё один важный критерий – это материалы, из которых изготовлена та или иная модель. Именно этому параметру и посвящена данная статья.

Из каких материалов изготавливают удилища?

Если рассматривать всё разнообразие используемых ныне удилищ, то материалов обнаруживается весьма большое количество. К ним можно отнести нержавейка, алюминий, дерево, бамбук и даже тот же тростник.

Однако это те материалы, которые используются разве что заядлыми рыбаками-консерваторами или же в экстренных ситуациях. Мы же сосредоточимся на кратном анализе наиболее ходовых и современных материалов, к которым относятся стекловолокно, композит и углепластик.

Стекловолокно

Всё ещё достаточно распространенный, но уже устаревающий материал, который применяется преимущественно для производства бюджетных удилищ. Модели из стекловолокна стоят относительно недорого и не требуют слишком деликатной эксплуатации.

 Однако имеются у них и очень важные недостатки: во-первых, подобные удилища обладают низкой чувствительностью, а во-вторых, «палки» из стекловолокна, как правило, характеризуются солидным весом, что существенно влияет на удобство их использования. 

Удилища из карбона

Карбон (он же углепластик) является, пожалуй, лучшим материалом для удилища, особенно спиннингового.

Углепластиковые удилища характеризуются отличной чувствительностью при сохранении высоких показателей прочности; также они обладают меньшим весом по сравнению с моделями из стекловолокна.

Каждое карбоновое удилище имеет определенный модуль содержания графита, который обозначается на бланке (М1, М2 и т.п.).

Чем выше уровень содержания графита, тем большей жесткостью и скоростью реакции обладает удилище, тем более дальним будет заброс.

Однако вместе с этим повышается и хрупкость удилища. Какой модели отдать предпочтение – выбор сугубо индивидуальный.

Композит

Композитные удилища представляют собой «гибридные» модели, так как изготавливаются тоже из углепластика, но с добавлением стекловолокна. Поэтому и свойства у них компромиссные: умеренная жесткость, средняя хрупкость и дальнобойность.

На сегодняшний день удилища из композита получили большую популярность среди рыбаков, так как отличаются доступной стоимостью и достаточно неплохими показателями качества.

Статья по теме: выбор фидерного удилища

Статьи по теме:

Оснастки для спиннинга (Техас, Каролина, дропшот)

Рыболовные узлы и поводки, прочность узлов

Как разбирать и смазывать катушку

Ловля на джеркбейты

Ловля на поверхностные приманки (глиссеры)

Ловля на пропбейт (приманка с пропеллером)

Как выбрать поппер, на что обращать внимание при выборе

Ловля на девон(уникальная блесна с пропеллером)

Cпиннербейт своими руками, (изготовление и ловля)

Рыболовные самоделки своими руками

 

Своими руками

16 тыс. просмотров

Рейтинг зимних блесен для ловли на окуня

 

Зимняя рыбалка

13 тыс. просмотров

Обзор лучших балансиров для зимней рыбалки

 

Зимняя рыбалка

1454 просмотров

Ловля на мормышки: разновидности, снасти, техника ловли

 

Зимняя рыбалка

19 тыс. просмотров

Виды рыбопоисковых эхолотов для рыбалки

 

Эхолоты

19 тыс. просмотров

Обзор алюминиевых лодок для рыбалки

 

Лодки

14 тыс. просмотров

Обзор и рейтинг эхолотов для рыбалки

 

Эхолоты

7 тыс. просмотров

Как выбрать катушку для спиннинга?

 

Катушки

10 тыс. просмотров

Электромоторы для надувных лодок(обзор)

 

Моторы

3 тыс. просмотров

Алюминиевые катера для рыбалки

 

Лодки

8 тыс. просмотров

Какую катушку выбрать для фидера — обзор характеристик

 

Фидер

19 тыс. просмотров

Характеристики и возможности фидерных удилищ

 

Фидер

6 тыс. просмотров

Рейтинг карповых катушек с байтранером

 

Карпфишинг

9 тыс. просмотров

Лодка для рыбалки: на что обращать внимание при пркупке

 

Лодки

21 тыс. просмотров

Как выбрать мотор для лодки?

 

Моторы

3 тыс. просмотров

Классификация воблеров и других приманок

 

Спиннинг

30 тыс. просмотров

Ловля на  силиконовые приманки

 

Спиннинг

15 тыс. просмотров

Лучшие воблеры на щуку: размер, цвет, проовдка

 

Спиннинг

4 тыс. просмотров

Ловля фидером на флэт-кормушки

 

Фидер

8 тыс. просмотров

Самодельная прикормка для леща своими руками

 

Фидер

21 тыс. просмотров

Ловля спиннингом на раттлины

 

Спиннинг

3 тыс. просмотров

Как выбрать карповую катушку: обзор и рейтинг

 

Карпфишинг

14 тыс. просмотров

fisher-book.ru

Как выбрать спиннинг: карбон и его модульность

Карбон или углепластик – современный синтетический материал, широко применяемый в рыболовстве для производства высококачественных поплавочных и спиннинговых удилищ, а также роторов рыболовных катушек премиум-уровня. Представляет собой своего рода ткань, состоящую из нескольких слоев углеродного волокна, расположенных под определенным углом друг к другу, а также связующего эти слои синтетического материала.

glossy-25MM-Carbon-fiber-tubes2.jpg

Благодаря особой кристаллической структуре углеволокно в 4 раза превосходит по прочности стальную нить аналогичного диаметра, будучи при этом в 5 раз легче. Углеродные волокна используются как основа для изготовления высокотехнологичной продукции не только в рыболовстве. Графитовое волокно востребовано в самолето- и машиностроении, при производстве спортивного инвентаря, в строительстве.

В качестве связующего материала используют, как правило, различные эпоксидные или полимерные смолы. Тип композитной основы во многом обуславливает потребительские характеристики конечного продукта – например, вес, степень прочности, термостойкость. Основным же параметром, определяющим эксплуатационные свойства карбонового удилища, является модульность углеволокна, из которого оно изготовлено.

Справка: модульность или модуль упругости – это степень устойчивость углеродного волокна к сжатию, растяжению и иным видам деформаций. Измеряется в тоннах силы на квадратный метр. В зависимости от типа углеволокна, а так же плотности его плетения и количества тканых слоев, модульность карбона варьируется от 24 до 40 тонн. При этом, чем выше данный параметр, тем быстрее согнутое под нагрузкой удилище будет возвращаться в исходное положение и тем чувствительнее оно к поклевке.

sp_Fenixx_1.jpg

Для получения бланка нужного строя производители нередко используют сочетание углеволокон разной модульности. Например, специалисты итальянской компании Tubertini, одного из лидеров европейского рынка товаров для рыболовства, для изготовления основной части спиннингового удилища быстрого строя Fenixx используют высокопрочный карбон японской марки Toray с модулем упругости 30 тонн, а для более чувствительной вершинки – Toray с маркировкой 36 тонн. Пропускные кольца особой конусной формы позволяют избежать перехлест лески. А рукоятка, изготовленная из неопрена и натуральной пробки, обеспечивает надежное сцепление удилища с рукой и исключает выскальзывание снасти в процессе лова.

Подводя итог, можно сказать, что к основным преимуществам удилищ из карбона относятся:

  • небольшой вес;

  • высокая прочность;

  • выраженная чувствительность к поклевке.

В то же время, в ходе эксплуатации карбоновых бланков, необходимо помнить об их восприимчивости к сильным ударам и неустойчивости к изломам. Учет этих нюансов позволит продлить срок службы удилища.

petrokanat.ru