Вики газ: Горьковский автомобильный завод — Википедия – ГАЗ (компания) — Википедия

Содержание

Технические газы — Википедия

Материал из Википедии — свободной энциклопедии

Технические газы — химические вещества и их соединения в газообразном или жидком (при сжижении) состоянии, получаемые искусственным путём при разделении атмосферного воздуха, выделением из углеводородного сырья или химическими способами, хранящиеся под давлением в специальных сосудах и используемые в производственных и бытовых целях.

Импортный баллон с пропаном

Технические газы используют в производстве товаров (металлургия, химическая промышленность), при выполнении строительно-монтажных работ (сварочные работы, работы по резке металлов), добыче углеводородов, в пищевой промышленности (при охлаждении продуктов, производстве газированных напитков), сельском хозяйстве, производстве оружия, метрологии (в измерительных приборах), в развлекательных целях (надуваемые гелием воздушные шары).

Ёмкость для хранения и транспортировки технических газов

Наряду с техническими газами выделяют такой их подвид, как

медицинские газы, используемые в работе медицинских приборов, в лечебных и реанимационных процедурах. Основным медицинским газом является медицинский кислород.

В настоящее время на рынке получают широкое распространение газовые смеси, которые позволяют сделать результат работ или процедур более высоким по качеству. В качестве примера можно привести сварочные газовые смеси (к примеру, защитная газовая сварочная смесь на основе углекислоты и аргона), медицинские газовые смеси и поверочные газовые смеси (используются в метрологии) на основе особо чистых газов.

Азот, аргон, кислород и двуокись углерода — получаются в процессе разделения атмосферного воздуха на кислород и азот на специальном оборудовании — воздухоразделительных установках.

Ацетилен — производится путём выделения газа при взаимодействии карбида кальция с водой.

Гелий — выделяется при добыче гелийсодержащих природных газов.

Пропан-бутановая смесь — выделяется при добыче углеводородного сырья.

Баллоны для хранения и транспортировки технических газов

Основной способ транспортировки технических газов — перевозка различными видами транспорта в сосудах, работающих под давлением (газовых баллонах вместимостью от 10 до 50 л). Каждому техническому газу при транспортировке в баллонах соответствует баллон особого цвета: для кислорода — голубого, для пропан-бутана — красного, для аргона — серого, для азота — чёрного, для ацетилена — белого, для гелия — коричневого, для углекислоты — чёрного цвета. Перевозка технических газов автомобильным транспортом осуществляется специальными автомобилями с допуском к перевозке опасных грузов и со специальными знаками.

Возможна транспортировка технических газов в жидком состоянии (жидкий кислород, азот, аргон) в автомобильных или железнодорожных цистернах.

Для транспортировки технических газов на крупные предприятия возможна транспортировка через специальные трубопроводы. Таким способом Свердловский кислородно-ацетиленовый завод поставлял в 1970-е годы кислород на Уральский завод тяжелого машиностроения.

Кроме того, популярным сегодня становится расположение производственных мощностей производителей непосредственно на территории крупного потребителя газов.

Государственный надзор за безопасностью производства технических газов, оборота газов и эксплуатации сосудов, работающих под давлением, осуществляют органы Ростехнадзора.

Монооксид углерода — Википедия

Монооксид углерода
Carbon monoxide 2D.svg Carbon-monoxide-3D-vdW.png({{{картинка3D}}}
)
Систематическое
наименование
Монооксид углерода
Хим. формула CO
Рац. формула CO
Состояние бесцветный газ
Молярная масса 28,01 г/моль
Плотность 0,001250°C; 0,814-195°C г/см³
Энергия ионизации 14,01 ± 0,01 эВ[2]
Температура
 • плавления −205 °C
 • кипения −191,5 °C
Пределы взрываемости 12,5 ± 0,1 об.%[2]
Энтальпия
 • образования −110,52 кДж/моль
Давление пара 35 ± 1 атм[2]
Растворимость
 • в воде 0,0026 г/100 мл
Рег. номер CAS 630-08-0
PubChem 281
Рег. номер EINECS 211-128-3
SMILES
InChI
RTECS FG3500000
ChEBI 17245
Номер ООН 1016
ChemSpider 275
Токсичность Высокотоксичен, СДЯВ
Пиктограммы ECB Пиктограмма «T+: Крайне токсично» системы ECBПиктограмма «F+: Крайне огнеопасно» системы ECBПиктограмма «N: Опасно для окружающей среды» системы ECB
NFPA 704
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Commons-logo.svg Медиафайлы на Викискладе

Моноокси́д углеро́да (уга́рный газ, о́кись углеро́да, оксид углерода(II)) — бесцветный чрезвычайно токсичный газ без вкуса и запаха, легче воздуха (при нормальных условиях). Химическая формула — CO.

Молекула CO имеет тройную связь, как и молекула азота N2. Так как эти молекулы сходны по строению (изоэлектронны, двухатомны, имеют близкую молярную массу), то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.

В рамках метода валентных связей строение молекулы CO можно описать формулой » :C≡O: «.

Согласно методу молекулярных орбиталей электронная конфигурация невозбуждённой молекулы CO σ2
Oσ2
zπ4
x, y σ2
C. Тройная связь образована σ-связью, образованной за счёт σz электронной пары, а электроны дважды вырожденного уровня πx, y соответствуют двум π-связям. Электроны на несвязывающих σC-орбитали и σO-орбитали соответствуют двум электронным парам, одна из которых локализована у атома углерода, другая — у атома кислорода.

Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль, или 256 ккал/моль, что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (dC≡O=0,1128 нм или 1,13 Å).

Молекула слабо поляризована, её электрический дипольный момент μ = 0,04⋅10−29 Кл·м. Многочисленные исследования показали, что отрицательный заряд в молекуле CO сосредоточен на атоме углерода C

−←O+ (направление дипольного момента в молекуле противоположно предполагавшемуся ранее). Энергия ионизации 14,0 эВ, силовая константа связи k = 18,6.

Оксид углерода(II) представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

Основными типами химических реакций, в которых участвует оксид углерода(II), являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах. Так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO

2↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже.

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2Cr2O7 — в присутствии солей ртути, KClO3 — в присутствии OsO4. В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

Ниже 830 °C более сильным восстановителем является CO, — выше — водород. Поэтому равновесие реакции

h3O+CO⇄CO2+h3{\displaystyle {\mathsf {H_{2}O+CO\rightleftarrows CO_{2}+H_{2}}}}

до 830 °C смещено вправо, выше 830 °C влево.

Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Оксид углерода(II) горит пламенем синего цвета[3] (температура начала реакции 700 °C) на воздухе:

2CO+O2→2CO2{\displaystyle {\mathsf {2CO+O_{2}\rightarrow 2CO_{2}}}} (ΔG°298 = −257 кДж, ΔS°298 = −86 Дж/K).

Температура горения CO может достигать 2100 °C. Реакция горения является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак, сероводород и др.)

Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления. В смеси с воздухом взрывоопасен; нижний и верхний концентрационные пределы распространения пламени: от 12,5 до 74 % (по объёму)[4].

Оксид углерода(II) реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:

CO+Cl2→hνCOCl2.{\displaystyle {\mathsf {CO+Cl_{2}{\xrightarrow {h\nu }}COCl_{2}}}.}

Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген — вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакцииям могут быть получены COF2 (карбонилфторид) и COBr2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F2 тепловой эффект 481 кДж, с Br2 — 4 кДж). Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).

Реакцией CO с F2, кроме карбонилфторида COF2, можно получить перекисное соединение (FCO)2O2. Его характеристики: температура плавления −42 °C, кипения +16 °C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200 °C разлагается со взрывом (продукты реакции CO2, O2 и COF2), в кислой среде реагирует с иодидом калия по уравнению:

(FCO)2O2+2KI→2KF+I2+2CO2.{\displaystyle {\mathsf {(FCO)_{2}O_{2}+2KI\rightarrow 2KF+I_{2}+2CO_{2}.}}}

Оксид углерода(II) реагирует с халькогенами. С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

CO+S→COS{\displaystyle {\mathsf {CO+S\rightarrow COS}}} (ΔG°298 = −229 кДж, ΔS°298 = −134 Дж/K).

Получены также аналогичные селеноксид углерода COSe и теллуроксид углерода COTe.

Восстанавливает SO2:

2CO+SO2→2CO2+S.{\displaystyle {\mathsf {2CO+SO_{2}\rightarrow 2CO_{2}+S.}}}

C переходными металлами образует горючие и ядовитые соединения — карбонилы, такие как [Fe(CO)5], [Cr(CO)6], [Ni(CO)4], [Mn2(CO)10], [Co2(CO)9] и др. Некоторые из них летучие.

nCO+Me→[Me(CO)n]{\displaystyle {\mathsf {nCO+Me\rightarrow [Me(CO)_{n}]}}}

Оксид углерода(II) незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Однако реагирует с расплавами щелочей с образованием соответствующих формиатов:

CO+KOH→HCOOK.{\displaystyle {\mathsf {CO+KOH\rightarrow HCOOK.}}}

Интересна реакция оксида углерода(II) с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:

2K+2CO→K2C2O2.{\displaystyle {\mathsf {2K+2CO\rightarrow K_{2}C_{2}O_{2}.}}}

Реакцией с аммиаком при высоких температурах можно получить важное для промышленности соединение — циановодород HCN. Реакция идёт в присутствии катализатора (диоксид тория ThO2) по уравнению:

CO+Nh4→h3O+HCN.{\displaystyle {\mathsf {CO+NH_{3}\rightarrow H_{2}O+HCN.}}}

Важнейшим свойством оксида углерода(II) является его способность реагировать с водородом с образованием органических соединений (процесс синтеза Фишера — Тропша):

xCO+yh3→{\displaystyle {\mathsf {xCO+yH_{2}\rightarrow }}} спирты + линейные алканы.

Этот процесс является источником производства таких важнейших промышленных продуктов как метанол, синтетическое дизельное топливо, многоатомные спирты, масла и смазки.

Токсичность[править | править код]

Угарный газ очень токсичен.

TLV (предельная пороговая концентрация, США): 25 ppm; 29 мг/м³ (как TWA — среднесменная концентрация, США) (ACGIH 1994—1995). MAC (максимальная допустимая концентрация, США): 30 ppm; 33 мг/м³; Беременность: B (вредный эффект вероятен даже на уровне MAK) (1993). ПДКр.з. по Гигиеническим нормативам ГН 2.2.5.1313—03 составляет 20 мг/м³ (около 0,0017 %).

В выхлопе бензинового автомобиля допускается до 1,5-3 % (допустимая концентрация сильно различается в зависимости от страны/применяемых стандартов; а 3% — много даже для старого карбюраторного автомобиля без катализатора).

По классификации ООН оксид углерода(II) относится к классу опасности 2,3, вторичная опасность по классификации ООН: 2,1.

Угарный газ очень опасен, так как не имеет запаха и вызывает отравление и даже смерть.[5] Признаки отравления: головная боль и головокружение; отмечается шум в ушах, одышка, учащённое сердцебиение, мерцание перед глазами, покраснение лица, общая слабость, тошнота, иногда рвота; в тяжёлых случаях судороги, потеря сознания, кома[6][3].

Токсическое действие оксида углерода(II) обусловлено образованием карбоксигемоглобина — значительно более прочного карбонильного комплекса с гемоглобином, по сравнению с комплексом гемоглобина с кислородом (оксигемоглобином)[6]. Таким образом, блокируются процессы транспортировки кислорода и клеточного дыхания. Концентрация в воздухе более 0,1 % приводит к смерти в течение одного часа[6].

Опыты на молодых крысах показали, что концентрация CO в воздухе 0,02 % замедляет их рост и снижает активность по сравнению с контрольной группой.

Помощь при отравлении оксидом углерода(II)[править | править код]

Соединение окиси углерода с гемоглобином обратимо. При отравлении рекомендуются следующие действия[6]:

  • Пострадавшего следует вынести на свежий воздух. При отравлении лёгкой степени достаточно гипервентиляции лёгких кислородом.
  • Искусственная вентиляция лёгких, О2-терапия, в том числе в барокамере.
  • Ацизол, хромосмон внутривенно.


Мировой медицине неизвестны надежные антидоты для применения в случае отравления угарным газом[7].

Защита от оксида углерода(II)[править | править код]

CO очень слабо поглощается активированным углём обычных фильтрующих противогазов, поэтому для защиты от него применяется специальный фильтрующий элемент (он может также подключаться дополнительно к основному) — гопкалитовый патрон. Гопкалит представляет собой катализатор, способствующий окислению CO в CO2 при нормальных температурах. Недостатком использования гопкалита является то, что при его применении приходится вдыхать нагретый в результате реакции воздух. Обычный способ защиты — использование изолирующего дыхательного аппарата[3].

Эндогенный монооксид углерода[править | править код]

Эндогенный монооксид углерода вырабатывается в норме клетками организма человека и животных и выполняет функцию сигнальной молекулы. Он играет известную физиологическую роль в организме, в частности, является нейротрансмиттером и вызывает вазодилатацию[8]. Ввиду роли эндогенного угарного газа в организме, нарушения его метаболизма связывают с различными заболеваниями, такими, как нейродегенеративные заболевания, атеросклероз кровеносных сосудов, гипертоническая болезнь, сердечная недостаточность, различные воспалительные процессы[8].

Эндогенный угарный газ образуется в организме благодаря окисляющему действию фермента гемоксигеназы на гем, являющийся продуктом разрушения гемоглобина и миоглобина, а также других гемосодержащих белков. Этот процесс вызывает образование в крови человека небольшого количества карбоксигемоглобина, даже если человек не курит и дышит не атмосферным воздухом (всегда содержащим небольшие количества экзогенного угарного газа), а чистым кислородом или смесью азота с кислородом.

Вслед за появившимися в 1993 году первыми данными о том, что эндогенный угарный газ является нормальным нейротрансмиттером в организме человека[9][10], а также одним из трёх эндогенных газов, которые в норме модулируют течение воспалительных реакций в организме (два других — оксид азота (II) и сероводород), эндогенный угарный газ привлёк значительное внимание клиницистов и исследователей как важный биологический регулятор. Было показано, что во многих тканях все три вышеупомянутых газа являются противовоспалительными веществами, вазодилататорами, а также вызывают ангиогенез[11]. Однако не всё так просто и однозначно. Ангиогенез — не всегда полезный эффект, поскольку он, в частности, играет роль в росте злокачественных опухолей, а также является одной из причин повреждения сетчатки при макулярной дегенерации. В частности, курение (основной источник угарного газа в крови, дающий в несколько раз большую концентрацию его, чем естественная продукция) повышает риск макулярной дегенерации сетчатки в 4-6 раз.

Существует теория о том, что в некоторых синапсах нервных клеток, где происходит долговременное запоминание информации, принимающая клетка в ответ на принятый сигнал вырабатывает эндогенный угарный газ, который передаёт сигнал обратно передающей клетке, чем сообщает ей о своей готовности и в дальнейшем принимать сигналы от неё и повышая активность клетки-передатчика сигнала. Некоторые из этих нервных клеток содержат гуанилатциклазу, фермент, который активируется при воздействии эндогенного угарного газа[10].

Исследования, посвящённые роли эндогенного угарного газа как противовоспалительного вещества и цитопротектора, проводились во множестве лабораторий по всему миру. Эти свойства эндогенного угарного газа делают воздействие на его метаболизм интересной терапевтической мишенью для лечения таких разных патологических состояний, как повреждение тканей, вызванное ишемией и последующей реперфузией (а это, например, инфаркт миокарда, ишемический инсульт), отторжение трансплантата, атеросклероз сосудов, тяжёлый сепсис, тяжёлая малярия, аутоиммунные заболевания. Проводились в том числе и клинические испытания на человеке, однако результаты их пока ещё не опубликованы[12].

На 2015 год о роли эндогенного угарного газа в организме известно следующее[13]:

  • Эндогенный угарный газ — одна из важных эндогенных сигнальных молекул;
  • Эндогенный угарный газ модулирует функции ЦНС и сердечно-сосудистой системы;
  • Эндогенный угарный газ ингибирует агрегацию тромбоцитов и их адгезию к стенкам сосудов;
  • Влияние на обмен эндогенного угарного газа в будущем может быть одной из важных терапевтических стратегий при ряде заболеваний.

Токсичность дыма, выделяющегося при горении угля, была описана ещё Аристотелем и Галеном.

Оксид углерода(II) был впервые получен французским химиком Жаком де Лассоном в 1776 при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем.

То, что в состав этого газа входит углерод и кислород, выяснил в 1800 английский химик Вильям Крюйкшенк. Токсичность газа была исследована в 1846 году французским медиком Клодом Бернаром в опытах на собаках[14].

Оксид углерода(II) вне атмосферы Земли впервые был обнаружен бельгийским учёным М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК-спектре Солнца. Оксид углерода(II) в межзвёздной среде был обнаружен в 1970 г.[15]

Промышленный способ[править | править код]

Влияние температуры на равновесие реакции: CO2+C⇄2CO{\displaystyle {\mathsf {CO_{2}+C\rightleftarrows 2CO}}}
2C+O2→2CO{\displaystyle {\mathsf {2C+O_{2}\rightarrow 2CO}}} (тепловой эффект этой реакции 220 кДж),
CO2+C⇄2CO{\displaystyle {\mathsf {CO_{2}+C\rightleftarrows 2CO}}} (ΔH = 172 кДж, ΔS = 176 Дж/К)

Эта реакция происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом оксид углерода(II) вследствие своей ядовитости вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий — «угарный газ»[3].

Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево — энтальпийный. При температуре ниже 400 °C равновесие практически полностью сдвинуто влево, а при температуре выше 1000 °C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому оксид углерода(II) при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара.

Лабораторный способ[править | править код]

HCOOH→h3SO4oth3O+CO.{\displaystyle {\mathsf {HCOOH{\xrightarrow[{H_{2}SO_{4}}]{^{o}t}}H_{2}O+CO.}}}
Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме:
HCOOH+ClSO3H→h3SO4+HCl+CO↑.{\displaystyle {\mathsf {HCOOH+ClSO_{3}H\rightarrow H_{2}SO_{4}+HCl+CO\uparrow .}}}
h3C2O4→h3SO4otCO↑+CO2↑+h3O.{\displaystyle {\mathsf {H_{2}C_{2}O_{4}{\xrightarrow[{H_{2}SO_{4}}]{^{o}t}}CO\uparrow +CO_{2}\uparrow +H_{2}O.}}}
K4[Fe(CN)6]+6h3SO4+6h3O→ot2K2SO4+FeSO4+3(Nh5)2SO4+6CO↑.{\displaystyle {\mathsf {K_{4}[Fe(CN)_{6}]+6H_{2}SO_{4}+6H_{2}O{\xrightarrow[{}]{^{o}t}}2K_{2}SO_{4}+FeSO_{4}+3(NH_{4})_{2}SO_{4}+6CO\uparrow .}}}
Mg+ZnCO3→otMgO+ZnO+CO↑.{\displaystyle {\mathsf {Mg+ZnCO_{3}{\xrightarrow[{}]{^{o}t}}MgO+ZnO+CO\uparrow .}}}

Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:

PdCl2+CO+h3O→Pd↓+CO2+2HCl.{\displa

Благородные газы — Википедия

Группа →8
↓ Период
1
2
3
4
36

Криптон

3d104s24p6
5
54

Ксенон

4d105s25p6
6
86

Радон

4f145d106s26p6
7
118

Оганесон

5f146d107s27p6

Благоро́дные га́зы (также ине́ртные[2] или ре́дкие га́зы[3]) — группа химических элементов со схожими свойствами: при нормальных условиях они представляют собой одноатомные газы без цвета, запаха и вкуса с очень низкой химической реактивностью[en]. К благородным газам относятся гелий (He), неон (Ne), аргон (Ar), криптон (Kr), ксенон (Xe) и радиоактивный радон (Rn). Формально к этой группе также причисляют недавно открытый оганесон (Og), однако его химические свойства почти не исследованы.

В первых 6 периодах периодической таблицы химических элементов инертные газы относятся к последней, 8-й группе. Согласно старой европейской системе нумерации групп периодической таблицы, группа инертных газов обозначается VIIIA (главная подгруппа 8-й группы, или подгруппа гелия), согласно старой американской системе — VIIIB; кроме того, в некоторых источниках, особенно в старых, группа инертных газов обозначается цифрой 0, ввиду характерной для них нулевой валентности. Возможно, что из-за релятивистских эффектов элемент 7-го периода 4-й группы флеровий обладает некоторыми свойствами благородных газов[4]. Он может заменить в периодической таблице оганесон[5]. Благородные газы химически неактивны и способны участвовать в химических реакциях лишь при экстремальных условиях.

Характеристики благородных газов объяснены современными теориями структуры атома: их электронные оболочки из валентных электронов являются заполненными, тем самым позволяя участвовать лишь в очень малом количестве химических реакций: известны всего несколько сотен химических соединений этих элементов.

Неон, аргон, криптон и ксенон выделяют из воздуха специальными установками, используя при этом методы сжижения газов и фракционированной конденсации. Источником гелия являются месторождения природного газа с высокой концентрацией гелия, который отделяется с помощью методов криогенного разделения газов. Радон обычно получают как продукт радиоактивного распада радия из растворов соединений этого элемента.

Диаграмма атомных оболочек неона, 2 электрона на внутренней оболочке и 8 электронов на внешней Неон, как и все благородные газы, имеет заполненную электронную оболочку. Все атомы благородных газов имеют на внешней орбите 8 электронов. Исключением является гелий (только 2 электрона)

Благородные газы не поддерживают горения и не возгораются при нормальных условиях.

Элемент№ электронов/электронной оболочки
2гелий2
10неон2, 8
18аргон2, 8, 8
36криптон2, 8, 18, 8
54ксенон2, 8, 18, 18, 8
86радон2, 8, 18, 32, 18, 8

Соединения[править | править код]

Структура XeF4, одного из первых когда-либо обнаруженных соединений благородных газов Структура тетрафторида ксенона XeF4, одного из первых когда-либо обнаруженных соединений благородных газов

Инертные газы отличаются химической неактивностью (отсюда и название). Тем не менее, в 1962 году Нил Барлетт показал, что все они при определённых условиях могут образовывать соединения (особенно охотно со фтором). Наиболее «инертны» неон и гелий: чтобы заставить их вступить в реакцию, нужно применить много усилий, искусственно ионизируя каждый атом. Ксенон же, наоборот, слишком активен (для инертных газов) и реагирует даже при нормальных условиях, демонстрируя чуть ли не все возможные степени окисления (+1, +2, +4, +6, +8). Радон тоже имеет высокую химическую активность (по сравнению с лёгкими инертными газами), но он радиоактивен и быстро распадается, поэтому подробное изучение его химических свойств осложнено, в отличие от ксенона.

Оганесон, несмотря на его принадлежность к 18-й группе периодической таблицы, может не являться инертным газом, так как предполагается, что при нормальных условиях в силу релятивистских эффектов, влияющих на движение электронов вблизи его ядра с высоким зарядом, он будет находиться в твёрдом состоянии[6].

Структура XeF4, одного из первых когда-либо обнаруженных соединений благородных газов

Инертные газы бесцветны, прозрачны и не имеют запаха и вкуса. В небольшом количестве они присутствуют в воздухе и некоторых горных породах, а также в атмосферах некоторых планет-гигантов и планет земной группы. Гелий является вторым (после водорода) по распространённости элементом во Вселенной, однако для Земли он является редким газом, который улетучился в космос во время образования планеты. Почти весь добываемый гелий является радиогенным продуктом происходящего в течение миллиардов лет в недрах Земли альфа-распада урана, тория и их дочерних элементов; лишь малая часть земного гелия сохранилась от эпохи образования Солнечной системы. Аналогично, по большей части радиогенным является и аргон, возникший в результате постепенного радиоактивного распада калия-40.

При нормальных условиях все элементы 8-й группы (кроме, возможно, оганесона) являются одноатомными газами. Их плотность растёт с увеличением номера периода. Плотность гелия при нормальных условиях примерно в 7 раз меньше плотности воздуха, тогда как радон почти в восемь раз тяжелее воздуха.

При нормальном давлении температуры плавления и кипения у любого благородного газа отличаются менее чем на 10 °C; таким образом, они остаются жидкими лишь в малом температурном интервале. Температуры сжижения и кристаллизации растут с ростом номера периода. Гелий под атмосферным давлением вообще не становится твёрдым даже при абсолютном нуле — единственный из всех веществ.

Инертные газы не обладают химической токсичностью. Однако атмосфера с увеличенной концентрацией инертных газов и соответствующим снижением концентрации кислорода может оказывать удушающее действие на человека, вплоть до потери сознания и смерти[7][8]. Известны случаи гибели людей при утечках инертных газов.

Ввиду высокой радиоактивности всех изотопов радона он является радиотоксичным. Наличие радона и радиоактивных продуктов его распада во вдыхаемом воздухе вызывает стохастические эффекты хронического облучения, в частности рак.

Инертные газы обладают биологическим действием, которое проявляется в их наркотическом воздействии на организм и по силе этого воздействия располагаются по убыванию в следующем порядке (в сравнении приведены также азот и водород): Xe — Kr — Ar — N2 — H2 — Ne — He. При этом ксенон и криптон проявляют наркотический эффект при нормальном барометрическом давлении, аргон — при давлении свыше 0,2 МПа (2 атм), азот — свыше 0,6 МПа (6 атм), водород — свыше 2,0 МПа (20 атм). Наркотическое действие неона и гелия в опытах не регистрируются, так как под давлением раньше возникают симптомы «нервного синдрома высокого давления» (НСВД)[9].

Структура XeF4, одного из первых когда-либо обнаруженных соединений благородных газов Благородные газы в вакуумных стеклянных колбах, через которые пропущен ток

Лёгкие инертные газы имеют очень низкие точки кипения и плавления, что позволяет их использовать в качестве холодильного агента в криогенной технике. Жидкий гелий, который кипит при 4,2 К (−268,95 °C), используется для получения сверхпроводимости — в частности, для охлаждения сверхпроводящих обмоток электромагнитов, применяемых, например, для магнитно-резонансной томографии и других приложений ядерного магнитного резонанса. Жидкий неон, хотя его температура кипения (–246,03 °C) и не достигает таких низких значений как у жидкого гелия, также находит применение в криогенике, потому что его охлаждающие свойства (удельная теплота испарения) более чем в 40 раз лучше, чем у жидкого гелия, и более чем в три раза лучше, чем у жидкого водорода.

Гелий, благодаря его пониженной растворимости в жидкостях, особенно в липидах, используется вместо азота как компонент дыхательных смесей для дыхания под давлением (например, при подводном плавании). Растворимость газов в крови и биологических тканях растёт под давлением. В случае использования для дыхания обычного воздуха или других азотсодержащих дыхательных смесей это может стать причиной эффекта, известного как азотное отравление.

Благодаря меньшей растворимости в липидах, атомы гелия задерживаются клеточной мембраной, и поэтому гелий используется в дыхательных смесях, таких как тримикс и гелиокс, уменьшая наркотический эффект газов, возникающий на глубине. Кроме того, пониженная растворимость гелия в жидкостях тела позволяет избежать кессонной болезни при быстром всплытии с глубины. Уменьшение остатка растворённого газа в теле означает, что во время всплытия образуется меньшее количество газовых пузырьков; это уменьшает риск газовой эмболии. Другой инертный газ, аргон, рассматривается как лучший выбор для использования в качестве прослойки к сухому костюму[10][неавторитетный источник?] для подводного плавания.

Аргон, наиболее дешёвый среди инертных газов (его содержание в атмосфере составляет около 1 %), широко используется при сварке в защитных газах, резке и других приложениях для изоляции от воздуха металлов, реагирующих при нагреве с кислородом (и азотом), а также для обработки жидкой стали. Аргон также применяется в люминесцентных лампах для предотвращения окисления разогретого вольфрамового электрода. Также, ввиду низкой теплопроводности, аргон (а также криптон) используют для заполнения стеклопакетов.

После крушения дирижабля «Гинденбург» в 1937 году огнеопасный водород был заменен негорючим гелием в качестве заполняющего газа в дирижаблях и воздушных шарах, несмотря на снижение плавучести на 8,6 % по сравнению с водородом. Несмотря на замену, катастрофа оказала непропорционально большое влияние на всю область герметичных летательных аппаратов легче воздуха и подорвала планы по расширению этой области авиации более чем на полвека. Они стали популярнее только в последнее время, с развитием нановолоконных тканей и альтернативной энергетики.

  • Беннетт, Питер; Эллиотт, Дэвид. The Physiology and Medicine of Diving (неопр.). — SPCK Publishing, 1998. — ISBN 0-7020-2410-4.
  • Bobrow Test Preparation Services. CliffsAP Chemistry (неопр.). — CliffsNotes (англ.)русск., 2007. — ISBN 0-470-13500-X.
  • Гринвуд, Н.Н.; Ёрншо, A. Chemistry of the Elements (неопр.). — 2nd. — Oxford:Butterworth-Heinemann, 1997. — ISBN 0-7506-3365-4.
  • Хардинг, Чарли Дж.; Джейнс, Роб. Elements of the P Block (неопр.). — Royal Society of Chemistry, 2002. — ISBN 0-85404-690-9.
  • Холловэй, Джон. Noble-Gas Chemistry (неопр.). — Лондон: Methuen Publishing (англ.)русск., 1968. — ISBN 0-412-21100-9.
  • Менделеев, Дмитрий (англ.)русск.. Основы Химии (неопр.). — 7-е.
  • Оджима, Минору; Подосек, Франк. Noble Gas Geochemistry (неопр.). — Cambridge University Press, 2002. — ISBN 0-521-80366-7.
  • Вайнхольд, Ф.; Лэндис, C. Valency and bonding (неопр.). — Cambridge University Press, 2005. — ISBN 0-521-83128-8.
  • Скерри, Эрик. The Periodic Table, Its Story and Its Significance (англ.). — Oxford University Press, 2007. — ISBN 0-19-530573-6.

Газоснабжение — Википедия

Материал из Википедии — свободной энциклопедии

Газоснабже́ние — организованная подача и распределение газового топлива для нужд народного хозяйства.

Транспортирование газа на большие расстояния[править | править код]

Принципиальная схема газотранспортной системы: Ск — скважины, Сеп — сепараторы, ПГ — промысловые газопроводы, ПГРС — промысловая газораспределительная станция, МГ — магистральный газопровод, ПКС — промежуточная компрессорная станция, ЛЗА — линейная запорная арматура, ГРС — газораспределительная станция, ПХ — подземное хранилище газа, ПП — промежуточный потребитель

Газ, добытый из скважины, поступает в сепараторы, где от него отделяются твердые и жидкие механические примеси. Далее по промысловым газопроводам газ поступает в коллекторы и промысловые газораспределительные станции, где он очищается в масляных пылеуловителях, осушается, одорируется; давление газа снижается до расчетного значения, принятого в магистральном газопроводе. Компрессорные станции располагают примерно через 150 км.

Для возможности проведения ремонтов предусматривают линейную запорную арматуру, которую устанавливают не реже, чем через 25 км.

Для надежности газоснабжения магистральные газопроводы выполняют в две или несколько ниток. Газопровод заканчивается газораспределительной станцией, которая подает газ крупному городу или промышленному узлу. По пути газопровод имеет ответвления, по которым газ поступает к газораспределительным станциям промежуточных потребителей.

Для выравнивания сезонной неравномерности потребления газа служат подземные хранилища газа, для которых используются истощенные газовые и нефтяные месторождения, а при их отсутствии — в подземных водоносных пластах.

  • В коммунальном хозяйстве для приготовления пищи
  • для технологических нужд предприятий коммунально-бытового обслуживания
  • для нагревания воды, расходуемой для хозяйственно-бытовых и санитарно-гигиенических целей
  • для отопления, вентиляции и кондиционирования воздуха жилых и общественных зданий

В СССР общее потребление природного газа коммунальными хозяйствами в 1970 г. составляло 24,1 млрд м³, в 1975 г. — 40 млрд м³. Газы природные горючие, искусственные газы, сжиженные газы — элементы, используемые при газоснабжении. Предприятия машиностроения, чёрной и цветной металлургии, ТЭС — это крупнейшие потребители природного газа. Газоснабжение городов, сёл, промышленных предприятий, дальнейшее расширение областей использования природного газа повышают уровень культуры производства и быта населения. Газоснабжение городов и промышленных предприятий природными и искусственными газами осуществляется по магистральным газопроводам, транспортирующим газ от мест его добычи или производства к потребителям. Транспортировка сжиженных углеводородных газов от газобензиновых заводов к потребителям осуществляется по продуктопроводам, железнодорожными и автомобильными цистернами, а также в баллонах[1]; получает развитие морской транспорт сжиженных газов специальными судами — газовозами. Для надёжной работы системы вблизи крупных городов сооружаются подземные хранилища газа. Для газоснабжения малоэтажных жилых зданий и небольших коммунальных предприятий обычно применяют автономное газоснабжение оборудование которого представляет собой газобаллонные установки, состоящие из 1 или 2 баллонов со сжиженным газом, регулятора давления и газовых приборов (плита, водонагреватель). На 1 января 2019 г. в России газифицировано 68,6% жилых помещений.[1]

  • Стаскевич Н. Л., Справочное руководство по газоснабжению, Ленинград, 1960 г.
  • Демидов Г. В., Городское газовое хозяйство, 2 изд., Москва, 1964 г.
  • Стаскевич Н. Л., Майзельс П. Б., Вигдорчик Д. Я., Справочник по сжиженным углеводородным газам, Ленинград, 1964 г.
  • Кортунов А. К., Газовая промышленность СССР, Москва, 1967 г.

Идеальный газ — Википедия

Идеа́льный газ — теоретическая модель, широко применяемая для описания свойств и поведения реальных газов при умеренных давлениях и температурах. В этой модели, во-первых, предполагается, что составляющие газ частицы не взаимодействуют друг с другом, то есть их размеры пренебрежимо малы, поэтому в объёме, занятом идеальным газом, нет взаимных столкновений частиц. Частицы идеального газа претерпевают столкновения только со стенками сосуда. Второе предположение: между частицами газа нет дальнодействующего взаимодействия, например, электростатического или гравитационного. Дополнительное условие упругих столкновений между молекулами и стенками сосуда в рамках молекулярно-кинетической теории приводит к термодинамике идеального газа Перейти к разделу «#Классический идеальный газ».

В различных расширенных моделях идеального газа предполагается, что частицы имеют внутреннюю структуру и протяженные размеры, что можно представить частицы в виде эллипсоидов или сфер, соединённых упругими связями (например, двухатомные молекулы). Представление частиц газа в виде многоатомных молекул приводит к возникновению дополнительных степеней свободы, что побуждает учитывать энергию не только поступательного, но и вращательно-колебательного движения частиц, а также не только центральные, но и нецентральные столкновения частиц[1].

Модель широко применяется для решения задач термодинамики газов и аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с достаточной для практических расчётов точностью хорошо описывается моделью идеального газа.

В случае очень больших давлений требуется применение более точных уравнений состояния реальных газов, например, полуэмпирического уравнения Ван-дер-Ваальса, в котором учитывается притяжение между молекуламиПерейти к разделу «#Пределы применимости теории идеального газа» и их конечные размеры. При очень высоких температурах молекулы реальных газов могут диссоциировать на составляющие их атомы, или атомы могут ионизироваться с отщеплением электронов. Поэтому в случаях высоких давлений и/или температур уравнения состояния идеального газа применимы только с некоторыми допущениями, либо неприменимы совсем.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и подчиняются статистике Максвелла — Больцмана)Перейти к разделу «#Распределение Больцмана», квазиклассический идеальный газ[2] (для которого — в отличие от классического идеального газа — не выполняется закон равномерного распределения энергии по степеням свободы[3][4]) и квантовый идеальный газ (его свойства определяются законами квантовой механики и описываются статистиками Ферми — Дирака или Бозе — Эйнштейна)Перейти к разделу «#Квантовый идеальный газ».

С термодинамической точки зрения различие между классическим и квазиклассическим идеальными газами состоит в следующем. Теплоёмкость классического идеального газа не зависит от температуры и однозначно задана геометрией молекулы газа[5], которая тем самым определяет вид калорического уравнения состояния газа. Классические идеальные газы с одинаковой геометрией молекул подчиняются одному и тому же калорическому уравнению состояния. Теплоёмкость квазиклассического идеального газа зависит от температуры[6][K 1], причём эта зависимость индивидуальна для каждого газа; соответственно каждый квазиклассический идеальный газ описывается своим собственным калорическим уравнением состояния. Очень часто — в том числе и в данной статье, — когда различия между классическим и квазиклассическим приближениями не играют роли, термин «классический идеальный газ» рассматривают как синоним выражения «неквантовый идеальный газ». При макроскопическом подходе идеальными классическими и квазиклассическими газами называют гипотетические (реально не существующие) газы, подчиняющиеся термическому уравнению состояния Клапейрона[11][12] (Клапейрона — Менделеева[13][12]). Иногда дополнительно указывают, что для классического идеального газа справедлив закон Джоуля[14][15][16][17]. Термодинамика утверждает, что закон Джоуля выполняется для любого флюида с уравнением состояния вида pT=f(V){\displaystyle {\frac {p}{T}}=f(V)} или pV=f(T){\displaystyle pV=f(T)}, где p{\displaystyle p} — давление, T{\displaystyle T} — абсолютная температура и V{\displaystyle V} — объём (см. [18][19][20]). Поэтому, давая дефиницию классическому идеальному газу, упоминать о законе Джоуля необязательно. С другой стороны, если рассматривать данный закон как обобщение экспериментальных данных, то изложение макроскопической теории классического идеального газа требует привлечения только самых элементарных сведений из термодинамики.

Популярность модели «идеальный газ» в учебных курсах термодинамики обусловлена тем обстоятельством, что результаты, получаемые с помощью уравнения Клапейрона, представляют собой не слишком сложные математические выражения и обычно допускают простой аналитический и/или графический анализ поведения входящих в них величин. Квазиклассическое приближение используют для вычисления термодинамических функций газов по их молекулярным данным[21][22][23].

V Бенуа Клапейрон

История возникновения понятия идеальный газ восходит к успехам экспериментальной физики, начало которым было положено в XVII веке. В 1643 г. Эванджелиста Торричелли впервые доказал, что воздух имеет вес (массу), и, совместно с В. Вивиани, провёл опыт по измерению атмосферного давления с помощью запаянной с одного конца стеклянной трубки, заполненной ртутью. Так появился на свет первый ртутный барометр. В 1650 г. немецкий физик Отто фон Герике изобрёл воздушный насос и провёл в 1654 году знаменитый эксперимент с магдебургскими полушариями, наглядно подтвердивший существование атмосферного давления. Эксперименты английского физика Роберта Бойля по уравновешиванию ртутного столба давлением сжатого воздуха привели в 1662 году к выводу газового закона, названного впоследствии законом Бойля — Мариотта[24], в связи с тем, что французский физик Эдм Мариотт в 1679 г. провёл аналогичное независимое исследование.

В 1802 году французский физик Гей-Люссак опубликовал в открытой печати закон объёмов (называемый в русскоязычной литературе законом Гей-Люссака)[25], однако сам Гей-Люссак считал, что открытие было сделано Жаком Шарлем в неопубликованной работе, относящейся к 1787 году. Независимо от них этот закон был открыт в 1801 году английским физиком Джоном Дальтоном. Кроме того, качественно он был описан французским учёным Гийомом Амонтоном в конце XVII века. Гей-Люссак также установил, что коэффициент объёмного расширения одинаков для всех газов, несмотря на общепринятое мнение, что разные газы расширяются при нагревании различным образом.

Гей-Люссак (1822)[26][27][28] и Сади Карно (1824)[29][30][28] были первыми, кто объединил в едином уравнении законы Бойля — Мариотта и Шарля — Дальтона — Гей-Люссака. Поскольку, однако, Гей-Люссак найденным им уравнением не пользовался, а с полученными Карно результатами знакомились не по его ставшей библиографической редкостью[31] книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу»[32], а по изложению идей Карно в работе Бенуа Клапейрона «Мемуар о движущей силе огня»[33], то и вывод термического уравнения состояния идеального газа приписали Клапейрону[34][30], а уравнение стали называть уравнением Клапейрона, хотя сам этот учёный никогда не претендовал на авторство обсуждаемого уравнения[28]. Не вызывает, между тем, сомнения, что именно Клапейрон первый понял плодотворность применения уравнения состояния, существенно упрощавшего все связанные с газами расчёты.

Экспериментальные исследования физических свойств реальных газов в те годы были не вполне точны и проводились в условиях не сильно отличавшихся от нормальных (температура 0 ℃, давление 760 мм рт. ст.). Предполагалось также, что газ, в отличие от пара, представляет собой субстанцию, неизменную в любых физических условиях. Первый удар по этим представлениям нанесло сжижение хлора в 1823 г. В дальнейшем выяснилось, что реальные газы представляют собой перегретые пары, достаточно удалённые от областей конденсации и критического состояния. Любой реальный газ может быть превращён в жидкость путём конденсации, либо путём непрерывных изменений однофазового состояния. Таким образом выяснилось, что реальные газы представляют одно из агрегатных состояний соответствующих простых тел, а точным уравнением состояния газа может быть уравнение состояния простого тела. Несмотря на это, газовые законы сохранились в термодинамике и в её технических приложениях как законы идеальных газов — предельных (практически недостижимых) состояний реальных газов[35]. Уравнение Клапейрона было выведено при некоторых допущениях на основе молекулярно-кинетической теории газов (Августом Крёнигом в 1856 г.[36] и Рудольфом Клаузиусом в 1857 г.)[37]. Клаузиусом было введено и само понятие «идеальный газ»[38] (в отечественной литературе конца XIX — начала XX веков вместо названия «идеальный газ» использовали термин «совершенный газ»[39]).

Следующий важный шаг в формулировке термического уравнения состояния идеального газа — переход от индивидуальной для каждого газа постоянной к универсальной газовой постоянной — сделал русский инженер Илья Алымов[40][30][41], работа которого, опубликованная в малоизвестном среди физиков и химиков издании, не обратила на себя внимание. Этот же результат был получен Менделеевым в 1874 году[39][30][41]. Независимо от работ русских ученых Густав Цейнер[en] (1866)[42], Като Гульдберг (1867)[43] и Август Горстман[de] (1873)[44] пришли к выводу, что произведение индивидуальной для каждого газа постоянной в уравнении Клапейрона на молекулярный вес газа должно быть постоянной для всех газов величиной.

В 1912 году при выводе постоянной Нернста был впервые применён принцип разделения фазового пространства на равновеликие ячейки. Впоследствии в 1925 году Ш. Бозе опубликовал статью «Закон Планка и гипотеза о световых квантах», в которой развил эту идею применительно к фотонному газу. Эйнштейн сказал о данной статье, что «использованный здесь метод позволяет получить квантовую теорию идеального газа» [45]. В декабре того же года Энрико Ферми разработал статистику частиц с полуцелым спином, подчиняющихся принципу Паули, которые позднее назвали фермионами[46][47].

В отечественной литературе, изданной до конца 1940-х годов, термическое уравнение состояния идеального газа называли уравнением Клапейрона[48][49][50][51][52][53] или уравнением Клапейрона для 1 моля[54]. В фундаментальной отечественной монографии 1948 года, посвящённой различным уравнениям состояния газов[55], Менделеев — в отличие от Клапейрона — вообще не упоминается. Фамилия Менделеева в названии рассматриваемого нами уравнения появилась после начала «борьбы с низкопоклонством перед Западом» и поиска «русских приоритетов». Тогда-то и стали в научной и учебной литературе использовать такие варианты названия, как уравнение Менделеева[39][56], уравнение Менделеева — Клапейрона[57][58][59] и уравнение Клапейрона — Менделеева[56][60][61][62].

Молекулярно-кинетическая теория идеального газа[править | править код]

Объём идеального газа линейно зависит от температуры при постоянном давлении

Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

  • Размеры молекул пренебрежимо малы по сравнению со средним расстоянием между ними, так что суммарный объём, занимаемый молекулами, много меньше объёма сосуда[63][64][65];
  • импульс передаётся только при соударениях, то есть силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях[65];
  • соударения частиц между собой и со стенками сосуда абсолютно упруги[65];
  • количество молекул в газе велико и фиксированно, что позволяет вычислять средние величины по малому (по сравнению с размерами системы) объёму, система является эргодической, для того чтобы средние по ансамблю были равны средним по времени;
  • газ находится в термодинамическом равновесии со стенками сосуда и дополнительно отсутствуют макроскопические потоки вещества. Тут следует уточнить, что градиенты термодинамических величин могут иметь место, как например при включении внешнего поля, к примеру гравитационного.

В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно полному импульсу, передаваемому при столкновении частиц с участком стенки единичной площади в единицу времени[65], внутренняя энергия — сумме энергий частиц газа[66].

По эквивалентной макроскопической формулировке идеальный газ — такой газ, который одновременно подчиняется закону Бойля — Мариотта и Гей-Люссака[64][67], то есть:

pV=const⋅T,{\displaystyle pV=\mathrm {const} \cdot T,}

где p{\displaystyle p} — давление, V{\displaystyle V} — объём, T{\displaystyle T} — абсолютная температура.

Термическое уравнение состояния и термические коэффициенты идеального газа[править | править код]

Изотермы идеального газа нa pVT диаграмме

Термические свойства классического и квазиклассического идеального газа описываются уравнением Клапейрона[68][69][58]:

pV=mMRT,{\displaystyle pV={\frac {m}{M}}RT,}

где R — универсальная газовая постоянная (8.3144598 Дж(моль∙К)), m — масса газа, M — его молярная масса, или

pV=νRT,{\displaystyle pV=\nu RT,}

где ν — количество газа в молях.

В формулах статистической физики принято использовать постоянную Больцмана k (1.3806·10−23ДжК), массу частицы m´{\displaystyle {\acute {m}}} и число частиц N. Статистические и термодинамически величины связаны соотношениями:

m=m´N,   ν=NNA,   R=kNA,   kN=νR,{\displaystyle m={\acute {m}}N,~~~\nu ={\frac {N}{N_{A}}},~~~R=kN_{A},~~~kN=\nu R,}

где NА — число Авогадро (6.02214·10231моль). С использованием обозначений статистической физики уравнение Клапейрона принимает вид

pV=NkT,{\displaystyle pV=NkT,}

или

p=nkT,{\displaystyle p=nkT,}

где n — концентрация частиц.

Материал, касающийся термических коэффициентов идеального газа, изложен в статье Уравнение состояния.

Смесь идеальных газов[править | править код]

Смесь идеальных газов тоже идеальный газ. Каждой компоненте газа соответствует своё парциальное давление и общее давление смеси есть сумма парциальных давлений компонент смеси p=p1+p2+p3{\displaystyle p=p_{1}+p_{2}+p_{3}}… Также можно получить общее количество молей в смеси газов как сумму ν=ν1+ν2+ν3{\displaystyle \nu =\nu _{1}+\nu _{2}+\nu _{3}}… Тогда уравнение состояния для смеси идеальных газов[70]

pV=νRT.{\displaystyle pV=\nu RT.}

Совершенный газ (гидроаэромеханика)[править | править код]

В отличие от термодинамики в гидроаэромеханике газ, подчиняющийся уравнению Клапейрона, называют совершенным. У совершенного газа молярные изохорная CV{\displaystyle C_{V}} и изобарная CP{\displaystyle C_{P}} теплоёмкости постоянны. В то же время идеальным в гидроаэромеханике называют газ, у которого отсутствуют вязкость и теплопроводность. Модель совершенного газа широко применяют при исследовании течения газов[71].

Теплоёмкость[править | править код]

Определим теплоёмкость при постоянном объёме для идеального газа как

c^V=1νRT(∂S∂T)V=1νR(∂U∂T)V,{\displaystyle {\hat {c}}_{V}={\frac {1}{\nu R}}T\left({\frac {\partial S}{\partial T}}\right)_{V}={\frac {1}{\nu R}}\left({\frac {\partial U}{\partial T}}\right)_{V},}

где S — энтропия. Это безразмерная теплоёмкость при постоянном объёме, которая обычно зависит от температуры из-за межмолекулярных сил. При умеренных температурах это константа: для одноатомного газа ĉV = 3/2, для двухатомного газа и многоатомных газов с линейными молекулами это ĉV = 5/2, а для многоатомного газа с нелинейными молекулами ĉV = 6/2=3. Видно, что макроскопические измерения теплоемкости могут дать информацию о микроскопической структуре молекул. В отечественной учебной литературе, где понятие безразмерной теплоёмкости не получило распространения, для классического идеального газа его теплоёмкость при постоянном объёме CV полагают не зависящей от температуры и, согласно теореме о равнораспределении, равной[72]: 3/2 для всех одноатомных газов, 5/2 для всех двухатомных газов и многоатомных газов с линейными молекулами, 3 для всех многоатомных газов с нелинейными молекулами. Отличие квазиклассического идеального газа от классического состоит в ином виде зависимости внутренней энергии газа от его температуры[73]. Для классического идеального газа его теплоёмкость при постоянном объёме CV не зависит от температуры (она составляет), то есть внутренняя энергия газа всегда пропорциональна его температуре; для квазиклассического идеального газа его теплоёмкость CV{\displaystyle C_{V}} зависит от химического состава газа и температуры, то есть имеет место нелинейная зависимость внутренней энергии газа от температуры[74].

Теплоёмкость при постоянном давлении 1/R моль идеального газа:

c^P=1νRT(∂S∂T)P=1νR(∂H∂T)P=c^V+1,{\displaystyle {\hat {c}}_{P}={\frac {1}{\nu R}}T\left({\frac {\partial S}{\partial T}}\right)_{P}={\frac {1}{\nu R}}\left({\frac {\partial H}{\partial T}}\right)_{P}={\hat {c}}_{V}+1,}

где H = U + PV — энтальпия газа.

Иногда проводится различие между классическим идеальным газом, где ĉV и ĉP могут меняться с температурой и квазиклассическим идеальным газом, для которого это не так.

Для любого классического и квазиклассического идеального газа справедливо соотношение Майера[75]:

CP−CV=R,{\displaystyle C_{P}-C_{V}=R,}

где CP{\displaystyle C_{P}} — молярная теплоёмкость при постоянном давлении.

Соотношение теплоёмкостей при постоянном объёме и постоянном давлении

γ=cPcV{\displaystyle \gamma ={\frac {c_{P}}{c_{V}}}}

называется показателем адиабаты. Для воздуха, представляющего собой смесь газов, это соотношение составляет 1,4. Для показателя адиабаты справедлива теорема Реша[76]:

CPCV=(∂P∂V)S(∂P∂V)T.{\displaystyle {\frac {C_{P}}{C_{V}}}={\frac {\left({\frac {\partial P}{\partial V}}\right)_{S}}{\left({\frac {\partial P}{\partial V}}\right)_{T}}}.}(Теорема Реша)

Энтропия и термодинамические потенциалы[править | править код]

Выражая CV в терминах ĉV как было показано в предыдущем разделе, дифференцируя уравнение состояния идеального газа и интегрируя можно получить выражение энтропии[77]:

ΔS=c^VNkln⁡(TT0)+Nkln⁡(VV0),{\displaystyle \Delta S={\hat {c}}_{V}Nk\ln \left({\frac {T}{T_{0}}}\right)+Nk\ln \left({\frac {V}{V_{0}}}\right),}

Данное выражение, после ряда преобразований позволяет получить термодинамические потенциалы для идеального газа как функции T, V, и N в виде[78]:

U{\displaystyle U\,}=c^VNkT{\displaystyle ={\hat {c}}_{V}NkT\,}
A{\displaystyle A\,}=U−TS{\displaystyle =U-TS\,}=μN−NkT{\displaystyle =\mu N-NkT\,}
H{\displaystyle H\,}=U+PV{\displaystyle =U+PV\,}=c^PNkT{\displaystyle ={\hat {c}}_{P}NkT\,}
G{\displaystyle G\,}=U+PV−TS{\displaystyle =U+PV-TS\,}=μN{\displaystyle =\mu N\,}

где, как и раньше,

c^P=c^V+1.{\displaystyle {\hat {c}}_{P}={\hat {c}}_{V}+1.}

Физический смысл температуры газа[править | править код]

{\displaystyle {\hat {c}}_{P}={\hat {c}}_{V}+1.} Давление, как процесс передачи импульса молекул газа стенкам сосуда

В рамках молекулярно-кинетической теории давление молекул газа на стенку сосуда p=FS{\displaystyle p={\frac {F}{S}}} равно отношению силы F{\displaystyle F}, действующей на стенку со стороны молекул, к площади стенки S{\displaystyle S}. Силу можно вычислить как отношение суммарного импульса K{\displaystyle K}, переданного стенке при столкновениях молекул за время Δt{\displaystyle \Delta t}, к длительности этого интервала:

p=KSΔt.{\displaystyle p={\frac {K}{S\Delta t}}.\qquad \qquad }(1)

При

Реальный газ — Википедия

Реальный газ — в общем случае — газообразное состояние реально существующего вещества. В термодинамике под реальным газом, понимается газ, который не описывается в точности уравнением Клапейрона — Менделеева, в отличие упрощенной его модели — гипотетического идеального газа, строго подчиняющегося вышеуказанному уравнению. Обычно под реальным газом понимают газообразное состояние вещества во всем диапазоне его существования. Однако, существует и другая классификация, по которой реальным газом называется высоко перегретый пар, состояние которого незначительно отличается от состояния идеального газа, а к парам относят перегретый пар, состояние которого заметно отличается от идеального газа, и насыщенный пар (двухфазовая равновесная система жидкость — пар), который вообще не подчиняется законам идеального газа. [1] С позиции молекулярной теории строения вещества реальный газ — это газ, свойства которого зависят от взаимодействия и размеров молекул. Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определённый объём. Состояние реального газа часто на практике описывается обобщённым уравнением Клапейрона — Менделеева:

pV=Zr(p,T)mMRT,{\displaystyle pV={{Z}_{r}}(p,T){\frac {m}{M}}RT,}

где p{\displaystyle p} — давление, V{\displaystyle V} — объём, T{\displaystyle T} — температура,  Zr=Zr(p,T){\displaystyle \ Z_{r}=Z_{r}(p,T)} — коэффициент сжимаемости газа, m{\displaystyle m} — масса, M{\displaystyle M} — молярная масса, R{\displaystyle R} — универсальная газовая постоянная.

Чтобы подробнее установить условия, когда газ может превратиться в жидкость и наоборот, простых наблюдений за испарением или кипением жидкости недостаточно. Надо внимательно проследить за изменением давления и объёма реального газа при разных температурах.

Будем медленно сжимать газ в сосуде с поршнем, например сернистый ангидрид (SO2). Сжимая его, мы выполняем над ним работу, вследствие чего внутренняя энергия газа увеличится. Когда мы хотим, чтобы процесс происходил при постоянной температуре, то сжимать газ надо очень медленно, чтобы теплота успевала переходить от газа в окружающую среду.

Выполняя этот опыт, можно заметить, что сначала при большом объёме давление с уменьшением объёма увеличивается согласно закону Бойля — Мариотта. В конце концов, начиная с какого-то значения, давление не будет изменяться, несмотря на уменьшение объёма. На стенках цилиндра и поршня образуются прозрачные капли. Это означает, что газ начал конденсироваться, то есть переходить в жидкое состояние.

Продолжая сжимать содержимое цилиндра, мы будем увеличивать массу жидкости под поршнем и, соответственно, будем уменьшать массу газа. Давление, которое показывает манометр, будет оставаться постоянным до тех пор, пока всё пространство под поршнем не заполнит жидкость. Жидкости мало сжимаемы. Поэтому дальше, даже при незначительном уменьшении объёма, давление будет быстро возрастать.

Поскольку весь процесс происходит при постоянной температуре T{\displaystyle T}, кривую, что изображает зависимость давления p{\displaystyle p} от объёма V{\displaystyle V}, называют изотермой. При объёме V1{\displaystyle V_{1}} начинается конденсация газа, а при объёме V2{\displaystyle V_{2}} она заканчивается. Если V>V1{\displaystyle V>V_{1}}, то вещество будет в газообразном состоянии, а при V<V2{\displaystyle V<V_{2}} — в жидком.

Опыты показывают, что такой вид имеют изотермы и всех других газов, если их температура не очень высокая.

В этом процессе, когда газ превращается в жидкость при изменении его объёма от V1{\displaystyle V_{1}} к V2{\displaystyle V_{2}}, давление газа остаётся постоянным. Каждой точке прямолинейной части изотермы 1—2 соответствует равновесие между газообразным и жидким состояниями вещества. Это означает, что при определённых T{\displaystyle T} и V{\displaystyle V} количество жидкости и газа над ней остаётся неизменным. Равновесие имеет динамический характер: количество молекул, которые покидают жидкости, в среднем равняется количеству молекул, которые переходят из газа в жидкость за одно и то же время.

Также существует такое понятие как критическая температура, если газ находится при температуре выше критической (индивидуальна для каждого газа, например для углекислого газа примерно 304 К), то его уже невозможно превратить в жидкость, какое бы давление к нему не прилагалось. Данное явление возникает вследствие того, что при критической температуре силы поверхностного натяжения жидкости равны нулю. Если продолжать медленно сжимать газ при температуре большей критической, то после достижения им объёма, равного приблизительно четырём собственным объёмам молекул, составляющих газ, сжимаемость газа начинает резко падать.

Точки Бойля, кривая Бойля, температура Бойля[править | править код]

Рассмотрим отклонение свойств реального газа от свойств идеального газа с помощью PV,P{\displaystyle PV,P}-диаграммы. Из уравнения Клапейрона — Менделеева следует, что изотермы идеального газа на такой диаграмме изображаются горизонтальными прямыми. Воспользуемся уравнением состояния реального газа в вириальной форме. Для одного моля газа [2]

PV=RT+BP+CP2+DP3+…{\displaystyle PV=RT+BP+CP^{2}+DP^{3}+…}(Вириальное уравнение состояния реального газа)

где B,C{\displaystyle B,C} и D{\displaystyle D} — соответственно второй, третий и четвёртый вириальные коэффициенты, зависящие только от температуры. Из вириального уравнения состояния следует, что на PV,P{\displaystyle PV,P}-диаграмме ось ординат (P=0{\displaystyle P=0}) соответствует идеально-газовому состоянию вещества: при P→0{\displaystyle P\to 0} вириальное уравнение состояния превращается в уравнение Клапейрона — Менделеева и, следовательно, положения точек пересечения изотерм с ординатой на рассматриваемой диаграмме соответствуют значениям RT{\displaystyle RT} для каждой из изотерм.

Из вириального уравнения состояния находим:

B=(∂(P,V)∂P)T,P=0.{\displaystyle B=\left({\frac {\partial (P,V)}{\partial P}}\right)_{T,P=0}.}(Второй вириальный коэффициент)
PV, P-диаграмма реального газа

Таким образом, в рассматриваемой системе координат наклон (то есть угловой коэффициент касательной) изотермы газа в точке пересечения этой изотермы с осью ординат даёт значение второго вириального коэффициента.

На PV,P{\displaystyle PV,P} -диаграмме изотермы, соответствующие температурам, меньшим некоторого значения TB{\displaystyle T_{B}} (называемого температурой Бойля) имеют минимумы, называемые точками Бойля[3][4][5][6].

Некоторые авторы в понятие «точка Бойля» вкладывают другое содержание, а именно, они исходят из единственности точки Бойля, понимая под ней точку на PV,P{\displaystyle PV,P}-диаграмме с нулевым давлением и температурой, равной температуре Бойля[7][8][9].

В точке минимума

(∂(P,V)∂P)T=0,{\displaystyle \left({\frac {\partial (P,V)}{\partial P}}\right)_{T}=0,}

что всегда справедливо для идеального газа. Иными словами, в точке Бойля сжимаемости реального и идеального газов совпадают[8]. Участок изотермы слева от точки Бойля соответствует условиям, когда реальный газ более сжимаем, чем идеальный; участок справа от точки Бойля соответствует условиям худшей сжимаемости реального газа по сравнению с идеальным[6].

Линию, являющуюся геометрическим местом точек минимумов изотерм на PV,P{\displaystyle PV,P}-диаграмме, называют кривой Бойля[2][4][5][6]. Точке пересечения кривой Бойля с осью ординат соответствует изотерма с температурой, равной температуре Бойля. Это означает, что при температуре Бойля второй вириальный коэффициент обращается в нуль[10][2] и температура Бойля есть корень уравнения[11][9]

(∂(P,V)∂P)T,P=0=0.{\displaystyle \left({\frac {\partial (P,V)}{\partial P}}\right)_{T,P=0}=0.}

Ниже температуры Бойля второй вириальный коэффициент отрицателен, выше — положителен[2][12]. Температура Бойля — важная характеристика кривой инверсии (в каждой точке которой дроссельный эффект равен нулю): при температурах ниже температуры Бойля возможно частичное сжижение газов при дросселировании[4][6] (подробнее см. в книге[13]).

Для газа, подчиняющегося уравнению Ван-дер-Ваальса,

TB=3.375TC,{\displaystyle T_{B}=3.375T_{C},}

где TC{\displaystyle T_{C}} — критическая температура[4][6]. Для многих веществ примерное значение температуры Бойля даёт следующее эмпирическое соотношение[7][8][14][9]:

TB≈(2.5÷2.75)TC.{\displaystyle T_{B}\approx (2.5\div 2.75)T_{C}.}

Из PV,P{\displaystyle PV,P}-диаграммы видно, что начальный участок изотермы с температурой Бойля, соответствующий сравнительно невысоким давлениям, достаточно близок к горизонтальной прямой, то есть при температуре газа, равной или близкой к температуре Бойля, реальный газ обладает свойствами, близкими к свойствам идеального газа[7][15].

Наиболее часто используются следующие уравнения состояния реального газа:

  1. ↑ Белоконь Н. И., Основные принципы термодинамики, 1968, с. 78..
  2. 1 2 3 4 Кириллин В. А. и др., Техническая термодинамика, 2008, с. 192..
  3. ↑ Базаров И. П., Термодинамика, 2010, с. 34..
  4. 1 2 3 4 Бойля точка // Физическая энциклопедия, т. 1, 1988, с. 226.
  5. 1 2 Термодинамика. Основные понятия. Терминология. Буквенные обозначения величин, 1984, с. 23..
  6. 1 2 3 4 5 Бойля точка // Большая Советская Энциклопедия, 3-е изд., т. 2, 1970.
  7. 1 2 3 Кириллин В. А. и др., Техническая термодинамика, 2008, с. 193..
  8. 1 2 3 Коновалов В. И., Техническая термодинамика, 2005, с. 200..
  9. 1 2 3 Додж Б. Ф., Химическая термодинамика, 1950, с. 219..
  10. ↑ Базаров И. П., Термодинамика, 2010, с. 35..
  11. ↑ Бэр Г. Д., Техническая термодинамика, 1977, с. 197..
  12. ↑ Еремин Е. Н., Основы химической термодинамики, 1978, с. 21..
  13. ↑ Докторов А. Б., Бурштейн А. И., Термодинамика, 2003, с. 50—56..
  14. ↑ Гуйго Э. И. и др., Техническая термодинамика, 1984, с. 116..
  15. ↑ Андрющенко А. И., Основы технической термодинамики реальных процессов, 1967, с. 95..
  • Андрющенко А. И. Основы технической термодинамики реальных процессов. — М.: Высшая школа, 1967. — 268 с.
  • Базаров И. П. Термодинамика. — 5-е изд. — СПб.—М.—Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3.
  • Белоконь Н. И. Основные принципы термодинамики. — Москва: Недра, 1968. — 112 с.
  • Бэр Г. Д. Техническая термодинамика. — М.: Мир, 1977. — 519 с.
  • Гуйго Э. И., Данилова Г. Н., Филаткин В. Н. и др. Техническая термодинамика / Под общ. ред. проф. Э. И. Гуйго. — Л.: Изд-во Ленингр. ун-та, 1984. — 296 с.
  • Додж Б. Ф. Химическая термодинамика в применении к химическим процессам и химической технологии. — М.: Иностранная литература, 1950. — 786 с.
  • Докторов А. Б., Бурштейн А. И. Термодинамика. — Новосибирск: Новосиб. гос. ун-т, 2003. — 83 с.
  • Еремин Е. Н. Основы химической термодинамики. — 2-е изд., испр. и доп. — М.: Высшая школа, 1978. — 392 с.
  • Кириллин В. А., Сычев В. В., Шейндлин А. Е. Техническая термодинамика. — 5-е изд., перераб. и доп. — М.: Изд. дом МЭИ, 2008. — 496 с. — ISBN 978-5-383-00263-6.
  • Коновалов В. И. Техническая термодинамика. — Иваново: Иван. гос. энерг. ун-т, 2005. — 620 с. — ISBN 5-89482-360-9.
  • Термодинамика. Основные понятия. Терминология. Буквенные обозначения величин / Отв. ред. И. И. Новиков. — АН СССР. Комитет научно-технической терминологии. Сборник определений. Вып. 103. — М.: Наука, 1984. — 40 с.

Водяной газ — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 ноября 2015; проверки требуют 7 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 ноября 2015; проверки требуют 7 правок.

Водяно́й газ (генераторный газ, синтез-газ) — газовая смесь, состав которой (в среднем, об. %) CO — 44, N2 — 6, CO2 — 5, H2 — 45.

Водяной газ получают продуванием водяного пара сквозь слой раскалённого угля или кокса. Реакция идёт по уравнению:

h3O+C→h3+CO{\displaystyle {\mathsf {H_{2}O+C\rightarrow H_{2}+CO}}}

Реакция эндотермическая, идёт с поглощением тепла — 31 ккал/моль (132 кДж/моль), поэтому для поддержания температуры в газогенератор время от времени для накаливания слоя кокса пропускают воздух (или кислород), либо в водяной пар добавляют воздух или кислород.

Именно поэтому водяной газ обычно имеет не стехиометрический состав, то есть 50 об.% H2 + 50 об.% CO, а содержит также другие газы (см. выше).

Продукты реакции имеют в 2 раза больший объём относительно объёма водяного пара. Именно на увеличение объёма затрачивается, согласно термодинамике, значительная часть внутренней энергии реакции.

Представляет интерес установка, которая может рекуперировать эту энергию (турбинная или поршневая). Часть энергии, в виде электроэнергии может быть потрачена на подогрев твёрдого топлива. В такой установке подогрев может производиться за счёт адиабатического сжатия водяного пара.

Если газогенераторная установка должна питать электростанцию, то её отработавшие газы могут подогревать водяной пар.

Водяной газ используется в качестве горючего газа (теплота сгорания 2800 ккал/м³), а также применяется в химическом синтезе — для получения синтетического топлива, смазочных масел, аммиака, метанола, высших спиртов и т. п.