Непосредственный впрыск распределенный впрыск что лучше: Распределенный или непосредственный впрыск (MPI или GDI). Какая разница и что лучше

Содержание

Распределенный впрыск топлива или непосредственный что лучше?

Дорогие друзья, сегодня узнаем много интересного о впрыске системы питания. И так: распределенный впрыск топлива или непосредственный? Что лучше и чем они отличаются?

Допустим у вас пришло время осуществить вашу мечту и вы серьезно взялись за выбор автомобиля. Дело серьёзное, и если выбор цвета и формы машины даётся довольно легко, то с подбором типа мотора могут возникнуть трудности, особенно у неподготовленных в техническом плане людей.

Если так, тогда вам однозначно следует внимательно прочитать эту статью.

Распределенный впрыск топлива: экономно и экологично

Не секрет, что распределённый впрыск топлива (инжекция)  – это современная технология, тесно связанная со сложной электроникой. Главной её «фишкой» является наличие индивидуальной форсунки у каждого цилиндра бензинового мотора.

Но, на самом деле, похожие системы, правда, имеющие механическое управление, появились ещё в конце ХIХ – начале ХХ веков. Использовались они в авиации, в гоночных машинах и иногда их интерпретации даже выходили на массовый автомобильный рынок.

Настоящий же бум распределенный впрыск пережил с появлением доступных микропроцессоров в конце 80-х годов и пользуется уважением у производителей транспортных средств и по сей день.

Перейдём к принципу работы и разновидностям системы распределенного впрыска (кстати, её ещё называют многоточечной системой).

Как мы уже упомянули, ключевой особенностью данной технологии являются топливные форсунки, которые устанавливаются по одной перед впускными клапанами каждого цилиндра двигателя.

Таким образом, в отличие от моновпрыска, удаётся добиться равномерного распределения топливно-воздушной смеси по цилиндрам, а также точной её дозировки.

В целом данная схема расположения форсунок позволила инженерам значительно повысить экологичность моторов, а также сделать их менее прожорливыми. Контролирует весь этот ансамбль электронный блок управления (ЭБУ).

Он при помощи многочисленных датчиков, передающих данные о температуре, положении педали газа, количестве поступающего воздуха и прочих параметрах, вычисляет оптимальный объём бензина для впрыска и в нужный для этого момент подаёт управляющий сигнал на открытие форсунок.

Момент впрыск топлива

Кстати, о времени открытия форсунок. Тут не всё так просто, и системы распределённого впрыска различаются в зависимости от того, в каком порядке происходит активация этих элементов. Существуют такие варианты впрыска:

  • одновременный;
  • попарно-параллельный;
  • фазированный.

Одновременный

При одновременной инжекции бензина все форсунки открываются единомоментно, и происходит это за один полный рабочий цикл двигателя (два оборота коленчатого вала). Не считаю это разумным ходом и не понимаю зачем лишний расход топлива.

Видимо это практиковалось на заре изобретения такого метода, когда не очень беспокоились об экологии и бензин был дешевый.

Попарно-параллельный

При попарно-параллельном открытии процесс разбивается таким образом, чтобы в один момент времени впрыск производили только две форсунки и только тех цилиндров, которые переходят в такты впуска и выпуска.

Здесь тоже наблюдается лишний впрыск, зачем он нужен в такте выпуска. Говорят это помогает при запуске двигателя в аварийном режиме. Ну хоть единовременно, и то хорошо.

Фазированный

Но самым современным из перечисленной тройки является фазированный алгоритм работы системы  распределенного впрыска топлива и используется в современных автомобилях. Он предусматривает включение каждой форсунки непосредственно перед тактом впуска соответствующего ей цилиндра. Это конечно разумно и правильно.

Главное в таком впрыске то, что форсунка впрыскивает топливную смесь во впускной коллектор на входе в цилиндр, непосредственно на впускной клапан. Впрыск производится на такте ВПУСК.

В погоне за показателями

Выше мы уже говорили о том, что система многоточечной инжекции позволила двигателям стать гораздо более «чистыми» по сравнению с предшественниками, оснащёнными моновпрыском или карбюратором.

Тем не менее, защитникам окружающей среды этого было мало и с каждым годом автопроизводителям приходилось учитывать всё более жёсткие экологические нормы.

Чем же отличается распределенный впрыск топлива от непосредственного?

А вот в чем. Как уже было сказано выше, при распределенном впрыске, смесь поступает в коллектор в область впускного клапана. А при непосредственном впрыске, прямо в камеру сгорания, минуя впускной коллектор.

Непосредственный впрыск

Непосредственный впрыск более точен и подаваемое давление топливной смеси выше, чем у распределенного впрыска. Такой принцип экономичнее (до 20% экономии топлива). экологичнее (топливо лучше сгорает). Но все же такой тип системы не лишен недоствтков и конструкторы пошли дальше.

А вот что из этого вышло, и какие технологии появились в результате, в Комбинированная система впрыска топлива TFSI.

 

 

//www.youtube.com/watch?v=lW7UOR68poQ

 

До встречи на страницах блога!

Что лучше: распределенный (MPI) или непосредственный впрыск (GDI)? | AutoBlogCar — мото и авто обзоры

AutoBlogCar.Ru – Полезные статьи для автолюбителей | https://autoblogcar.ru/engine/

Многие современные инжекторные двигатели оснащаются различной системой впрыска топлива. Уже давно ушел в историю моновпрыск, а тем более карбюратор, и сейчас остались два основных вида – это распределенный и непосредственный тип (на многих автомобилях они «скрыты» под аббревиатурами MPI и GDI). Однако простой обыватель реально не понимает в чем разница, а также — какой из них лучше.

Действительно пришел в салон смотришь на комплектации, а там сплошные MPI или GDI, могут быть еще и Турбо варианты. Начинаешь спрашивать консультанта, а он однозначно хвалит непосредственный впрыск, а вот распределенный (ну если уж денег не хватает). Но чем он так хорош то? Зачем переплачивать, и тратится именно на него?

Распределенный или многоточечный впрыск топлива

Начнем именно с него, все потому что он появился первым (перед своим оппонентом). Прототипы существовали еще на заре 20 века, правда они были далеко от идеала и зачастую использовали механическое управление.

Сокращение MPI (Multi Point Injection) – многоточечный распределенный впрыск. По сути это и есть современный инжектор.

Сейчас с развитием электроники карбюратор и прочие системы питания, которые были на заре, уходят в прошлое. Распределенный впрыск это электронная система питания, которая основана на инжекторах (от слова injection — впрыск), топливной рампе (куда они устанавливаются), электронном насосе (который крепится в баке). Все просто ЭБУ дает приказания насосу качать топливо, оно по магистрали идет до топливной рампы, далее в инжектора и после распыляется на уровне впускного коллектора.

Но эта система также шлифовалась годами. Существуют три типа впрыска:

  • Одновременный. Раньше в 70 – 80 годы никого не заботила цена на бензин (стоял он дешево), также никто не думал об экологии. Поэтому впрыск топлива происходил сразу во все цилиндры, при одном обороте коленчатого вала. Это было крайне не практично, потому как обычно (в 4 цилиндровом двигателе) — два поршня работают над сжатием, а другие два отводят отработанные газы. И если подавать бензин сразу во все «горшки» то другие два просто выкинут его в глушитель. Крайне затратно по бензину и очень вредно по экологии.
  • Попарно-параллельный. Этот вид в распределительном впрыске как вы наверное уже догадались, происходил в два цилиндра по очереди. То есть топливо поступало именно туда, где сейчас происходит сжатие.
  • Фазированный тип. Это самый совершенный на данный момент метод, здесь каждая форсунка живет «своей жизнью» и управляется отдельно. Она подает бензин именно перед тактом впуска. Здесь происходит максимальная экономия смеси, а также высокая экологическая составлявшая

Третий тип сейчас устанавливается на все современные модели автомобилей.

Где находится инжектор? Здесь кроется основное отличие распределительного впрыска от непосредственного. Форсунка находится на уровне впускного коллектора, рядом с блоком двигателя.

Смешение воздуха и бензина происходит именно в коллекторе. От дроссельной заслонки поступает дозированный воздух (который вы регулируете педалью газа), при достижении им  форсунки впрыскивается топливо, получается смесь, которая уже затягивается через впускные клапана в цилиндры мотора (дальше сжатие, воспламенение и отвод отработанных газов).

ПЛЮСАМИ такого метода можно назвать относительную простоту конструкции, дешевизну, также сами инжектора не должны быть сложными и устойчивыми к высоким температурам (потому как не имею контакта с горючей смесью), работают дольше без очистки, не так требовательны к качеству топлива.

МИНУСЫ больший расход топлива (по сравнению с оппонентом), меньшая мощность

Но из-за простоты, дешевизны и неприхотливости устанавливаются на большое количество моторов не только бюджетного сегмента, но и D-класса.

Непосредственный впрыск

Появился не так давно, в 80 – 90 года прошлого века. Развитием активно занимались такие бренды как MERCEDES, VOLKSWAGEN, BMW и т.д.

Сокращение GDI (Gasoline Direct Injection) – впрыск непосредственно в камеру сгорания.

Впрыск происходит по принципу фазированного типа, то есть каждая форсунка управляется отдельно. Зачастую они закреплены в рампу высокого давления (что-то наподобие COMMON RAIL), но бывают и отдельные элементы топливо подходит именно к каждой отдельно.

В чем отличие? Форсунки вкручиваются в сам блок двигателя и имеют непосредственное соприкосновение с камерой сгорания и воспламененной топливной смесью.

Воздух также подается через дроссель, далее по впускному коллектору – через клапана заходит в цилиндры мотора, после этого на цикле сжатия впрыскивается топливо, смешиваясь с воздухом и воспламеняясь от свечи. ТО есть смесь происходит непосредственно в двигателе, а не во впускном коллекторе, в этом то и кроется основная РАЗНИЦА!

ПЛЮСЫ. Топливная экономичность (может достигать до 10%), большая мощность (до 5%), лучшая экология.

МИНУСЫ. Нужно понимать форсунка находится рядом с воспламененной смесью, из этого вытекает:

  • Сложная конструкция
  • Сложное обслуживание
  • Дорогой ремонт и профилактика
  • Требование к качеству топлива (иначе банально забьется)

Как видите эффективно-технологично, но дорого обслуживать.

Что же лучше?

Как видите и тот и другой тип имеют весомые преимущества перед другим, видимо пока существуют оба.

AutoBlogCar.Ru – Полезные статьи для автолюбителей | https://autoblogcar.ru/engine/

Распределенный впрыск или непосредственный что лучше?

Непосредственный впрыск топлива: что это такое, чем отличается от других систем. Устройство двигателя с системой непосредственного впрыска, преимущества и недостатки.

Распределенный впрыск топлива: экономно и экологично

Не секрет, что распределённый впрыск топлива (инжекция)  – это современная технология, тесно связанная со сложной электроникой. Главной её «фишкой» является наличие индивидуальной форсунки у каждого цилиндра бензинового мотора.

Но, на самом деле, похожие системы, правда, имеющие механическое управление, появились ещё в конце ХIХ – начале ХХ веков. Использовались они в авиации, в гоночных машинах и иногда их интерпретации даже выходили на массовый автомобильный рынок.

Настоящий же бум распределенный впрыск пережил с появлением доступных микропроцессоров в конце 80-х годов и пользуется уважением у производителей транспортных средств и по сей день.

Перейдём к принципу работы и разновидностям системы распределенного впрыска (кстати, её ещё называют многоточечной системой

).

Как мы уже упомянули, ключевой особенностью данной технологии являются топливные форсунки, которые устанавливаются по одной перед впускными клапанами каждого цилиндра двигателя.

Таким образом, в отличие от моновпрыска, удаётся добиться равномерного распределения топливно-воздушной смеси по цилиндрам, а также точной её дозировки.

В целом данная схема расположения форсунок позволила инженерам значительно повысить экологичность моторов, а также сделать их менее прожорливыми. Контролирует весь этот ансамбль электронный блок управления (ЭБУ).

Он при помощи многочисленных датчиков, передающих данные о температуре, положении педали газа, количестве поступающего воздуха и прочих параметрах, вычисляет оптимальный объём бензина для впрыска и в нужный для этого момент подаёт управляющий сигнал на открытие форсунок.

Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

  1. В системе прямого впрыска, давление проходящего через форсунку топлива, в несколько десятков раз выше, нежели в системе распределенного впрыска. Это достигается благодаря применению ТНВД в конструкции силовых агрегатов с прямым топливовпрыском.
  2. Специальная конструкция форсунок системы прямой топливоподачи позволяет раскручивать капельки бензина на выходе, благодаря чему быстрее осуществляется их испарение. В то время как вся функция форсунки распределительной системы состоит из средств формирования топливного факела.

Как видно, система топливоподачи MPI гораздо проще во всех отношениях. Но, это далеко не все. В двигателях с прямой подачей топлива на их производительность влияет распределение воздуха внутри них и количество впрыснутого топлива в цилиндры. По этой причине поршневая часть в агрегатах с системой прямого впрыска имеет сложную профилированную конструкцию.

Подобную функцию выполняют и клапаны впуска в конструкции коллектора системы прямой подачи топлива. В конструкции HPi, GDI, CGI и FSI агрегатов предусмотрено послойное образование горючей смеси. Это говорит о том, что полностью сгорает лишь небольшое количество топлива, находящееся вблизи свечи зажигания либо происходит процесс разрушения этого облака из горючего для того, чтобы сделать всю рабочую смесь более обогащенной. В силовых бензиновых агрегатах конструкции MPI каналы для впуска топлива необходимы исключительно для впрыска смеси бензина с воздухом в цилиндры, поэтому они не имеют заслонок и винтовой формы, как моторы с прямой топливоподачей.

Такими «наворотами» перечисление отличий системы прямой подачи топлива от распределенной не заканчивается. Однако, большинство заметных моментов уже описаны выше. Если копнуть поглубже, то стоит отметить, что топливный насос высокого давления, наличие специального впускного коллектора, поршневой части особой конструкции и сложной системы форсунок отчасти можно отнести к недостаткам, наличие которых вовсе не говорит, что лишенным этого двигателям MPI придется сойти с дистанции. Во всяком случае, в ближайшее время.

Но, рано или поздно, это все же произойдет. И опять-таки по той же причине, которая относительно недавно сделала карбюратор и систему центральной подачи топлива достоянием политехнических музеев – отсутствие у системы распределенной подачи бензина высоких показателей экономии топлива без потери мощности силового агрегата, и большое количество вредных соединений в выхлопных газах автомобиля. Проведенные тестирования систем топливоподачи выявили, что силовые агрегаты с системой прямого впрыска топлива в отличие от других моторов, имеющих одинаковый объем, позволяют экономить порядка 20-25% топлива, при этом их мощность возрастает на 10%. Естественно, что ни один из существующих автопроизводителей не станет пренебрегать заявленными удовольствиями!

Но, наличие большого количества преимуществ вовсе не говорит об отсутствии недостатков. У системы прямой подачи топлива есть свой «скелет в шкафу». Если рассматривать экологическую составляющую использования прямого впрыска, то она практически идеальна, за исключением одного «но» – повышенного содержания сажи в выхлопных газах. Это и делает систему прямой топливоподачи единственным конкурентом дизельным силовым агрегатам. А это уже реальная возможность FSI поладить с MPI. Это было бы классно, но, во всяком случае, этим системам придется ладить друг с другом в одном двигателе.

Именно эту идею и воплотили в жизнь конструкторы компании Volkswagen, объединив в одном моторе обе системы MPI и FSI. Двигатели 1,8 и 2,0 TFSI относятся к третьему поколению агрегатов EA888.

Распределенный или многоточечный впрыск топлива

Начнем именно с него, все потому что он появился первым (перед своим оппонентом). Прототипы существовали еще на заре 20века, правда они были далеко от идеала и зачастую использовали механическое управление.

Сокращение MPI (Multi Point Injection) – многоточечный распределенный впрыск. По сути это и есть современный инжектор

Сейчас с развитием электроники карбюратор и прочие системы питания, которые были на заре, уходят в прошлое. Распределенный впрыск это электронная система питания, которая основана на инжекторах (от слова injection — впрыск), топливной рампе (куда они устанавливаются), электронном насосе (который крепится в баке). Все просто ЭБУ дает приказания насосу качать топливо, оно по магистрали идет до топливной рампы, далее в инжектора и после распыляется на уровне

впускного коллектора.

Но эта система также шлифовалась годами. Существуют три типа впрыска:

  • Одновременный. Раньше в 70 – 80 годы никого не заботила цена на бензин (стоял он дешево), также никто не думал об экологии. Поэтому впрыск топлива происходил сразу во все цилиндры, при одном обороте коленчатого вала. Это было крайне не практично, потому как обычно (в 4 цилиндровом двигателе) — два поршня работают над сжатием, а другие два отводят отработанные газы. И если подавать бензин сразу во все «горшки» то другие два просто выкинут его в глушитель. Крайне затратно по бензину и очень вредно по экологии.
  • Попарно-параллельный. Этот вид в распределительном впрыске как вы наверное уже догадались, происходил в два цилиндра по очереди. То есть топливо поступало именно туда, где сейчас происходит сжатие.
  • Фазированный тип. Это самый совершенный на данный момент метод, здесь каждая форсунка живет «своей жизнью» и управляется отдельно. Она подает бензин именно перед тактом впуска. Здесь происходит максимальная экономия смеси, а также высокая экологическая составлявшая

Я думаю с этим понятно, именно третий тип сейчас устанавливается на все современные модели автомобилей.

ГДЕ РАСПОЛАГАЕТСЯ ИНЖЕКТОР. Здесь кроется основное отличие распределительного впрыска от непосредственного. Форсунка находится на уровне впускного коллектора, рядом с блоком двигателя.

Смешение воздуха и бензина происходит именно в коллекторе. От дроссельной заслонки поступает дозированный воздух (который вы регулируете педалью газа), при достижении им форсунки впрыскивается топливо, получается смесь, которая уже затягивается через впускные клапана в цилиндры мотора (дальше сжатие, воспламенение и отвод отработанных газов).

ПЛЮСАМИ такого метода можно назвать относительную простоту конструкции, дешевизну, также сами инжектора не должны быть сложными и устойчивыми к высоким температурам (потому как не имею контакта с горючей смесью), работают дольше без очистки, не так требовательны к качеству топлива.

МИНУСЫ больший расход топлива (по сравнению с оппонентом), меньшая мощность

НО из-за простоты, дешевизны и неприхотливости устанавливаются на большое количество моторов не только бюджетного сегмента, но и D-класса.

Одноточечный..

ВПРЫСК, который также иногда называют центральным, стал широко применяться на легковых автомобилях в 80-х годах прошлого века. Подобная система питания получила свое название из-за того, что топливо подавалось во впускной коллектор лишь в одной точке.

Многие системы того времени были чисто механическими, электронного управления у них не было. Частенько основой для такой системы питания был обычный карбюратор, из которого просто удаляли все “лишние” элементы и устанавливали в районе его диффузора одну или две форсунки (поэтому центральный впрыск стоил относительно недорого). К примеру, так была устроена система TBI (“Throttle Body Injection”) компании “General Motors”.

Но, несмотря на свою кажущуюся простоту, центральный впрыск обладает очень важным преимуществом по сравнению с карбюратором – он точнее дозирует горючую смесь на всех режимах работы двигателя. Это позволяет избежать провалов в работе мотора, а также увеличивает его мощность и экономичность.

Со временем появление электронных блоков управления позволило сделать центральный впрыск компактнее и надежнее. Его стало легче адаптировать к работе на различных двигателях.

Однако от карбюраторов одноточечный впрыск унаследовал и целый ряд недостатков. К примеру, высокое сопротивление поступающему во впускной коллектор воздуху и плохое распределение топливной смеси по отдельным цилиндрам. Как результат – двигатель с такой системой питания обладает не очень высокими показателями. Поэтому сегодня центральный впрыск практически не встречается.

Кстати, концерн “General Motors” также разработал интересную разновидность центрального впрыска – CPI (“Central Port Injection”). В такой системе одна форсунка распыляла топливо в специальные трубки, которые были выведены во впускной коллектор каждого цилиндра. Это был своего рода прообраз распределенного впрыска. Однако из-за невысокой надежности от использования CPI быстро отказались.

Распределенный и непосредственный впрыск: отличие между системами и особенности установки ГБО

Бывают такие ситуации, когда водитель управляет автомобилем, но не знает, какая система впрыска топлива используется на его транспортном средстве. Эта информация понадобится автовладельцу, если он запланировал установить газобаллонное оборудование. Сразу стоит отметить, что существует два основных типа: распределенный и непосредственный. Такие системы имеют незначительную конструктивную разницу в расположении форсунок, которая влияет на такие важные параметры, как мощность и расход топлива. Знать отличия системы распределенного впрыска от непосредственного впрыска необходимо для того, чтобы правильно выбрать подходящий комплект ГБО.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Что значит последовательность впрыска

Последовательность или фазы впрыска топлива обусловлена следующими показателями:

  • За один отработанный цикл двигателя каждая специальная форсунка отрабатывает одну фазу впрыска;
  • Время этой фазы для каждой модели автомобиля может быть разным, но при этом количество топлива в большинстве случаев одинакова.

Распределенный впрыск топлива внедряется не на каждый автомобиль, поскольку он отличается тем, что подходит только для инжекторных автомобилей. Автовладельцы, которые сталкиваются с этой системой, отмечают, что она позволяет достичь до 15 % экономии топлива.

Особенности устройства инжекторного двигателя

Для того чтобы грамотно эксплуатировать автомобиль, у которого имеется система питания бензинового двигателя с впрыском топлива, необходимо иметь представление о его работе. Особенно когда речь идет об отечественных автомобилях, инжекторной системе подачи топлива ВАЗ 2114 и других машин.

Без этого будет сложно самому понимать и устранять возможные неисправности машины. Усвоив особенности конструкции, принцип работы, устройство инжекторного двигателя можно разобраться в неисправности и даже устранить ее, не обращаясь на СТО.

Инжекторным двигателем управляет контроллер. В отечественных машинах его обычно размещают справа под приборной панелью. Задача этого прибора — непрерывно обрабатывать информацию о состоянии мотора и обеспечивать надежную работу его систем. Блок управления включает различные реле, форсунки, датчики.

С помощью встроенной системы диагностики происходит распознавание неполадки в двигателе, сигнализируя контрольной лампой, хранит коды диагностики неисправностей. Она располагает тремя запоминающими устройствами, позволяющими оперативно анализировать техническое состояние за разные периоды времени.

Принципиальной особенностью двигателя является наличие форсунок, которые обеспечивают дозированный впрыск топливовоздушной смеси во впускную трубу после получения команды от управляющего блока. При этом необходимый воздух подается при помощи дроссельного узла и регулятора холостого хода. Форсунки крепятся к рампе, которая установлена на впускной трубе.

Форсунка представляет собой электромеханический клапан, который при помощи пружины запирается иглой. Когда от блока управления подается на обмотку электромагнита форсунки импульс, игла поднимается, открывая сопло распылителя. Через него смесь подается во впускную трубу мотора. Форсунки требуют постоянного контроля. Малейшее их засорение может негативно сказаться на работе двигателя.

Также важной частью этого двигателя является нейтрализатор, который преобразует вредные компоненты отработанных газов.

Момент впрыск топлива

Кстати, о времени открытия форсунок. Тут не всё так просто, и системы распределённого впрыска различаются в зависимости от того, в каком порядке происходит активация этих элементов. Существуют такие варианты впрыска:

  • одновременный;
  • попарно-параллельный;
  • фазированный.

Одновременный

При одновременной инжекции бензина все форсунки открываются единомоментно, и происходит это за один полный рабочий цикл двигателя (два оборота коленчатого вала). Не считаю это разумным ходом и не понимаю зачем лишний расход топлива.

Видимо это практиковалось на заре изобретения такого метода, когда не очень беспокоились об экологии и бензин был дешевый.

Попарно-параллельный

При попарно-параллельном открытии процесс разбивается таким образом, чтобы в один момент времени впрыск производили только две форсунки и только тех цилиндров, которые переходят в такты впуска и выпуска.

Здесь тоже наблюдается лишний впрыск, зачем он нужен в такте выпуска. Говорят это помогает при запуске двигателя в аварийном режиме. Ну хоть единовременно, и то хорошо.

Фазированный

Но самым современным из перечисленной тройки является фазированный алгоритм работы системы  распределенного впрыска топлива и используется в современных автомобилях. Он предусматривает включение каждой форсунки непосредственно перед тактом впуска соответствующего ей цилиндра. Это конечно разумно и правильно.

Главное в таком впрыске то, что форсунка впрыскивает топливную смесь во впускной коллектор на входе в цилиндр, непосредственно на впускной клапан. Впрыск производится на такте ВПУСК.

В погоне за показателями

Выше мы уже говорили о том, что система многоточечной инжекции позволила двигателям стать гораздо более «чистыми» по сравнению с предшественниками, оснащёнными моновпрыском или карбюратором.

Тем не менее, защитникам окружающей среды этого было мало и с каждым годом автопроизводителям приходилось учитывать всё более жёсткие экологические нормы.

Преимущества и недостатки системы распределенной подачи ТС

Подобный тип системы топливной подачи имеет некоторые преимущества и недостатки. Наиболее значимые из них мы отдельно выделим.

Преимущества системы:

  • долговечность и надежность;
  • высокая экономичность использования топлива;
  • низкая токсичность отработанных газов бензиновых ДВС;
  • низкая вероятность появления сбоев в работе системы в условиях экстремального вождения (например, при преодолении крутых спусков и подъемов, при езде в дождь или гололед).

Недостатки системы:

  • сложная и дорогостоящая конструкция, оснащенная чувствительной системой электронного управления;
  • высокая стоимость ремонта и замены основных электронных элементов системы;
  • особенность конструкции требует проведения ремонтных и профилактических работ только высококвалифицированными специалистами.

Общие сведения

Как правило, большая часть систем впрыска схожи между собой, принципиальное различие может заключаться в смесеобразовании.

Основные элементы топливных систем, вне зависимости от того, о бензиновых или дизельных двигателях идет речь:

  1. Бак, в котором хранится горючее. Бак представляет собой емкость, оснащенную насосным устройством, а также фильтрующим элементом для очистки горючего от грязи.
  2. Топливные магистрали представляют собой набор патрубков и шлангов, предназначенный для подачи топлива из бака в двигатель.
  3. Узел смесеобразования, предназначенный для образования горючей смеси, а также дальнейшей ее передачи в цилиндры, в соответствии с тактом работы силового агрегата.
  4. Управляющий модуль. Он используется в инжекторных моторах, это связано с необходимостью контроля различных датчиков, клапанов и форсунок.
  5. Сам насос. Как правило, в современных авто применяются погружные варианты. Такой насос представляет собой небольшой по размерам и мощности электромотор, подключенный к жидкостному насосу. Смазка устройства реализуется с помощью топлива. Если в бензобаке будет менее пяти литров горючего, это может привести к поломке мотора.


СПТ на моторе ЗМЗ-40911.10

Интересные новости по теме

Оставить комментарий

Другие статьи

#Бачок ГЦС

Бачок ГЦС: надежная работа гидропривода сцепления

14.10.2020 | Статьи о запасных частях

Многие современные автомобили, особенно грузовые, оснащаются гидравлическим приводом выключения сцепления. Достаточный запас жидкости для работы главного цилиндра сцепления хранится в специальном бачке. Все о бачках ГЦС, их типах и конструкции, а также о выборе и замене этих деталей читайте в статье.

Добавить в

Без категории (16) Купить оптом (23) Для МихМихалыча (123)

Как работает?


Работа системы впрыска топлива автомобиля
Система впрыска осуществляет анализ текущего состояния и подбирает такой вариант, при котором сгорание бензина будет наиболее полным. Количество и качество подаваемой смеси определяется все тем же чипом.От функционирования датчиков зависит многое.

Неточные показания или неправильно настроенная электронная система управления могут полностью вывести автомобиль из строя.

Заданные значения хранятся в компьютере. Память не зависит от питания и не сбрасывается после остановки или отключения устройства от цепи. Потому сбросить ее на базовые значения невозможно. А вот калибровать компьютер вполне реально. Это делается для достижения определенных целей. Например, увеличение скорости набора, мощности или экономии топлива. Конечно, применение вне оптимальных условий может быть сильно невыгодным.

Автомобилисты, использующих инжектор, утверждают, что неправильная настройка способна увеличить потребление бензина в 2-3 раза. Так что после приобретения данного чуда техники, нужно провести его настройку.

Другой вариант классификации

Система может быть нескольких видов и вариантов.

  • Одновременная комбинация – с практической точки зрения встречается редко. За один оборот все форсунки в ней срабатывают в одновременном порядке.
  • Параллельная работа (попарно) – в течение одного оборота вала происходит парное срабатывание форсунок, по одному разу за оборот.
  • Фазированная, последовательная – когда за выполнение валом одного оборота происходит отдельное регулирование любой из форсунок. При этом открытие элемента осуществляется 1 раз перед впуском.

Независимо от варианта классификации все механизмы имеют различия по ряду параметров, учитываемых в ходе эксплуатации.

Распределенный или непосредственный впрыск — Блог компании Pitstore

Еще лет 30 назад моновпрыск топлива вместе с карбюратором присутствовал на подавляющем большинстве автомобилей. Сегодня же эта технология безнадежно устарела и встречается только в старых машинах, остался только распределенный и непосредственный вброс.

Распределенный топливный впрыск

Второе название данного типа – многоточечный. По сути, это современный инжектор, который ставится на большинство нынешних моделей машин, состоит из топливного насоса на электронике, топливной рампы и собственно самого инжектора. Существует три типа распределенного метода впрыска:

  • одновременный. Очень непрактичный, затратный по бензину и вредный для экологии метод, поскольку впрыск идет одновременно во все цилиндры независимо от текущего такта в нем;
  • параллельно-попарный. Топливо поступает только туда, где идет сжатие в данный момент;
  • фазированный тип. Здесь впрыск идет в каждую форсунку по отдельности, непосредственно перед впуском.

Из плюсов – относительно простая конструкция, доступность, лояльность к невысокому качеству топлива. Из недостатков – меньшая мощность и больший расход топлива в сравнении с альтернативным впрыском.

Непосредственный впрыск топлива

Во многом схожий с фазированным типом впрыска, когда каждая форсунка управляется автономно. Отличие в том, что каждая форсунка непосредственно соединена с двигательным блоком, и подача топлива происходит именно туда. Воздух также подается непосредственно в блок камеры сгорания, смешивание происходит непосредственно в камере двигателя, а не во входящем впускном коллекторе.

Из достоинств такого метода впрыска – экономичность топлива, большая в сравнении с распределенным впрыском мощность, меньшая токсичность. Из недостатков – сложность конструкции, дорогой ремонт и обслуживание, высокие требования к качеству топлива.

Какой метод впрыска лучше

Каждый из методов впрыска имеет свои собственные достоинства. Например, распределенный впрыск не требует применения только очень чистого высокооктанового топлива, форсунки меньше забиваются, конструкция простая, что означает доступную цену ремонта и обслуживания системы впрыска. Именно поэтому форсунки с таким впрыском ставят на большинство современных машин, не предназначенных для больших скоростей ил суперэкономии топлива.

Непосредственный впрыск более капризный, его конструкция сложнее. Зато машина с таким впрыском едет быстрее, потребляет меньше топлива, а в выхлопе несожженного бензина куда меньше. Это хороший вариант для спортивной машины, где скорость реакции имеет решающее значение. Если можете себе позволить его купить и обслуживать, то он вам понравится.

В магазине «Питстор» вы сможете найти масло, которое обеспечит надежную работу любого типа двигателя, а также трансмисии и прочих важных узлов. Также у нас в продаже есть автохимия для ухода за машиной, множество аксессуаров и прочие полезные товары. Загляните в каталог – и точно найдете отличные товары для своей любимой машины!

Двигатели MPI и FSI — что лучше

Если спросить, что происходит, когда водитель нажимает или отпускает педаль «газа», скорее всего, услышите от владельцев бензиновых автомобилей, что при этом увеличивается или уменьшается подача топлива в мотор. Однако назвать правильным такой ответ можно только с большой натяжкой.

В действительности же, воздействуя на педаль «газа», водитель уменьшает или увеличивает подачу воздуха в цилиндры. Топлива же будет подано ровно столько, сколько требуется для приготовления смеси воздуха и бензина, заданной программой управления для конкретного режима работы двигателя и его фактического температурного состояния.

У карбюраторных моторов, давно ставших экспонатами политехнических музеев, количество подаваемого бензина и вовсе определялось разряжением воздуха в пространстве за дроссельной заслонкой, положение которой задавалось нажатием на педаль «газа». Точность такого способа дозирования топлива была невысока, что сказывалось на экономичности карбюраторных двигателей, количестве вредных выбросов в окружающую среду и в конечном итоге сделало карбюраторы достоянием истории.

На смену пришел впрыск, где подача бензина самотеком из жиклеров под действием разряжения воздуха была заменена распылением с помощью форсунок, к которым топливо поступает под давлением, развиваемым топливным насосом.

Существует три разновидности систем впрыска — центральный, распределенный и прямой. До настоящего времени дожили лишь две последние. Что касается центрального впрыска, нередко называемого также моновпрыском, то он оказался неспособным равномерно распределять горючую смесь по отдельным цилиндрам, а также создавал высокое сопротивление на впуске. Поэтому и центральный впрыск отправился в отставку, как только перестал соответствовать ужесточившимся экологическим требованиям и удовлетворять потребительским запросам к величине расхода топлива.

Однако и с распределенным впрыском, иногда именуемым многоточечным согласно англоязычному обозначению Multi Point Injection (MPI), не все ладно. Правда, его сопернику — системе питания с прямым впрыском бензина, о серийном производстве которой первой отрапортовала компания Mitsubishi еще в 1997 году, за 18 лет так и не удалось окончательно уложить MPI на лопатки. Но о том, что рано или поздно распределенный впрыск повторит судьбу карбюратора и моновпрыска, предрекают все специалисты без исключения.

На самом ли деле прямой впрыск настолько хорош, что делает поражение MPI неизбежным? Чтобы разобраться в этом вопросе, сравним обе системы питания.

И там и там в отличие от моновпрыска каждый цилиндр двигателя обслуживается отдельной форсункой, но при распределенном впрыске форсунки распыляют бензин во впускной коллектор.

При прямом впрыске бензин подается непосредственно в камеру сгорания цилиндра. Это главное, что отличает моторы, в зависимости от производителя помечаемые индексами GDI (Mitsubishi), FSI (Volkswagen), HPi (Peugeot), CGI (Mercedes-Benz) и так далее, от двигателей MPI.

Что же хорошего сулит подача бензина прямо внутрь цилиндра? Как ни странно, ничего, если подойти к этому вопросу с точки зрения конструкции двигателя. Проблема состоит в том, что при прямом впрыске на испарение бензина и перемешивание его паров с воздухом отводится примерно в 10 раз меньше времени, чем когда бензин распыляется во впускной коллектор, а в цилиндры поступает уже в смеси с воздухом после того, как открылись впускные клапана.

Как в условиях столь короткого промежутка времени, отводимого при прямом впрыске на смесеобразование, добиться, чтобы смесь получилась качественной, ведь именно от этого зависит, каким будет результат последующего сгорания?

Отсюда другие отличия GDI, FSI, HPi, CGI и иже с ними от MPI. Во-первых, давление, с которым форсунка при прямом впрыске распыляет бензин, в десятки раз превышает давление, действующее в системах питания с распределенным впрыском (порядка 50-120 бар против 3-4). Это предполагает наличие у двигателей с прямым впрыском топливного насоса высокого давления, в котором нет необходимости при распределенном впрыске.

Во-вторых, распылители форсунок прямого впрыска придают капелькам топлива вращение, что ускоряет их испарение. От форсунки распределенного впрыска требуется гораздо меньше — лишь сформировать факел топлива и направить его в зону впускного клапана. Другими словами, система питания MPI конструктивно проще, а значит, дешевле как при изготовлении, так и при ремонте для устранения неисправностей, что никак не может считаться ее недостатком.

Но и это еще не все. Важнейшую роль в организации рабочего процесса в моторах с прямым впрыском играет движение воздуха и порции впрыснутого бензина внутри цилиндра. Именно ради этого днище поршней в двигателях с прямым впрыском приобрело сложную профилированную форму, которая также принципиально отличает их от поршней MPI-моторов.

Той же цели служат и впускные каналы в коллекторах двигателей с прямым впрыском. В GDI, FSI и подобных им моторах поток воздуха из впускных каналов либо способствует так называемому послойному смесеобразованию, когда пригодным для нормального сгорания становится только небольшое облако смеси, расположенное возле свечи зажигания, либо разрушает расслоение, когда нужно, чтобы смесь стала стехиометрической. В двигателях MPI впускные каналы предназначены лишь для впуска бензовоздушной смеси в цилиндры, поэтому здесь нет необходимости придавать каналам винтовую форму, оснащать их заслонками, закрытыми или открытыми в зависимости от режима работы двигателя, как это делается при прямом впрыске. 

Этими ухищрениями перечень отличий прямого впрыска от распределенного не исчерпывается, но основные, видимые, как говорится, невооруженным глазом, уже названы. Итак, бензонасос высокого давления, более сложные форсунки, поршни, впускной коллектор — как ни крути, это не достоинства, а недостатки, которые не предвещают, что MPI-моторам, ничего подобного не имеющим, придется сойти со сцены. По крайней мере, в ближайшем будущем.

Тем не менее это должно случиться. Причина та же, что в свое время поставила крест на карбюраторе и моновпрыске, — неспособность распределенного впрыска удовлетворять все более строгим требованиям к содержанию вредных веществ в выхлопных газах и необходимость улучшения экономических характеристик без ухудшения динамических параметров. Сравнительные испытания с MPI показывают, что при одинаковом рабочем объеме двигатели с прямым впрыском демонстрируют не только уменьшенный на 20-25% расход топлива, но и обеспечивают 10-процентный прирост мощности. Какой производитель добровольно откажется от таких удовольствий?

Впрочем, есть у прямого впрыска один подвох. По части экологии он хорош во всем, за исключением выброса сажи в атмосферу. Тут прямой впрыск — достойный конкурент дизелю. Это дает шанс MPI ужиться с FSI. Оно бы и неплохо, но может статься, что совместно проживать им предстоит в одном моторе! Во всяком случае именно такая мысль пришла в голову инженерам концерна Volkswagen, разработавшим бензиновые силовые агрегаты 1.8 TFSI (заводские коды CJEB, CJSA, CJSB) и 2.0 TFSI (CNCB, CNCD, CJXC), составляющие семейство ЕА888 третьего поколения, где в одном двигателе используются сразу и FSI, и MPI!

Наш вердикт

Производители себе на уме, но если спросить у белорусских владельцев бензиновых автомобилей, какой мотор лучше, MPI или FSI, скорее всего, услышим в ответ дифирамбы в адрес первого и ничего хорошего о втором. И вот вам правда жизни: оценка системы питания, которой теоретики и аналитики прочат безоговорочную победу, может измениться на противоположную, если учесть, чем в наших условиях эксплуатации оборачивается ее сложность.

Сергей БОЯРСКИХ
Фото автора 
ABW.BY

Благодарим за консультации и помощь в организации фотосъемки «Ресурсный центр» на базе автомеханического колледжа имени академика М.С.Высоцкого

Найти и заказать необходимые запчасти вы можете, воспользовавшись каталогом сайта BAMPER.BY. Здесь собрано почти 300 тысяч предложений с фотографиями и ценой каждой запчасти от крупнейших белорусских поставщиков. Поиск любой запчасти — в три клика.

Непосредственный впрыск топлива

В поисках способа усовершенствовать систему распределенного впрыска инженеры пришли к выводу, что для оптимизации сгорания топлива его лучше впрыскивать прямо в цилиндры, а не во впускной коллектор. Эта идея привела к появлению систем впрыска нового поколения.

История создания непосредственного впрыска топлива

Изобретателем системы непосредственного впрыска принято считать французского инженера и автопромышленника Леона Левассора. Он установил первую систему подобного рода на авиационный двигатель V8 в качестве экспериментальной, с целью решить основную проблему самолетных двигателей внутреннего сгорания — нарушения работы впрыска в момент переворота аэроплана. В 1907 году этим двигателем был оснащен моноплан Antoinette VII.

Первую автомобильную систему непосредственного впрыска разработала компания Bosch, а установлена она была впервые на автомобили ныне несуществующих немецких марок Goliath и Gutbrod в 1952 году.

Непосредственный впрыск топлива.

В семидесятые годы, побуждаемая топливным кризисом, американская компания AMC занялась разработкой собственной системы непосредственного впрыска, которой впоследствии оснащали двигатели одноименных автомобилей. Система называлась SCFI. Примерно в те же годы концерн Ford выпустил на рынок собственную разработку под названием ProCo.

В современном автопроме первой активно начала продвигать непосредственный впрыск компания Mitsubishi в 1996 году

Системы обладали рядом недостатков, и после окончания кризиса интерес к непосредсвенному впрыску снизился. Следующая волна разработок пришлась на середину девяностых.

Первой активно начала продвигать непосредственный впрыск компания Mitsubishi в 1996 году, установив систему GDI на четырехцилиндровый двигатель 4G93 автомобиля Galant.

В 2000 году появилась, вероятно, наиболее известная в наши дни система непосредственного впрыска FSI концерна Volkswagen-Audi group

Toyota выпустила собственную систему D4 на внутренний рынок Японии в 1998 году. В 1999 была представлена система IDE компании Renault.

В 2000 году появилась система FSI (и TFSI в случае установки на двигатель турбины) концерна Volkswagen-Audi group.

В дальнейшем в том или ином виде свои системы представили все крупнейшие мировые производители. Непосредственный впрыск остается крайне актуальной темой в связи с интересом к экономии и жестким экологическим нормам в современном автомобилестроении.

Принцип работы непосредственного впрыска топлива

Непосредственный впрыск топлива — разновидность распределенного впрыска, применяемая в наиболее современных двухтактных и четырехтактных двигателях внутреннего сгорания.

Наиболее широкое распространение система получила в современных дизельных двигателях, так как дизельное топливо тяжелее бензина, и проблема оптимизации сгорания для них более актуальна

В системах непосредственного впрыска топливо сначала аккумулируется в магистрали под высоким давлением (более высоким, чем в обыкновенных инжекторных системах), а затем при помощи форсунок впрыскивается непосредственно в цилиндры, то есть в камеру сгорания, куда заранее уже закачан воздух.

При непосредственном впрыске топливо-воздушная смесь преднамеренно обеднена, что способствует повышению экономичности двигателя. При этом проблема снижения мощности решается за счет более эффективного распрыскивания топлива. Одно и то же количество топлива в зависимости от размера капель при распрыскивании сгорает по разному. Мелкие капли, смешавшись с воздухом, образуют в камере сгорания туман, в котором пламя распространяется равномерно. Топливо при таком распрыскивании сгорает практически без остатка, и продуктов сгорания почти не остается. При таком сгорании меньшая доза топлива отдает столько же тепла, сколько отдает большая доза при распрыскивании относительно крупными каплями. В последнее время исследования по оптимизации сгорания продолжаются. Наиболее перспективным направлением считается развитие послойного впрыска. Топливо при послойном впрыске попадает в камеру сгорания несколькими частями с очень малым интервалом. Этот алгоритм позволил добиться дополнительной оптимизации сгорании топлива.

Единственный недостаток непосредственного впрыска — усложнение конструкции и увеличение себестоимости компонентов. Производителям приходится проводить отладку системы уже после начала продаж

Дополнительная экономия достигается за счет точной дозировки топлива и открытия форсунок в строго определенное время. Благодаря компьютерному управлению момент и период открытия форсунок могут оперативно изменяться в зависимости от текущей нагрузки на двигатель.

В системах непосредственного впрыска основной упор сделан на дозировку топлива, поэтому роль дроссельной заслонки в регулировке состава смеси постепенно сходит на нет. По сути, в системах, подобных Valvetronic компании BMW, VVEL фирмы Nissan, Valvematic фирмы Toyota или MultiAir производства Fiat, дроссельная заслонка перестала быть главным инструментом, регулирующим поток воздуха, попадающего в камеру сгорания. Помимо системы дозировки топлива, функцию дроссельной заслонки отчасти взяла на себя система интеллектуального контроля фаз газораспределения.

Непосредственный впрыск конструктивно сближает систему впуска бензинового и дизельного двигателей

Благодаря применению непосредственного впрыска топлива появилась возможность заложить в блок управления разные программы управления впрыском и зажиганием, регулирующие работу режима в основных режимах, как правило, в трех — холостые обороты (и близкие к ним), движение под большой нагрузкой, движение при малой нагрузке. В каждом из этих режимов количество топлива в смеси разное. В режиме преднамеренно обедненной смеси достигается наибольшая экономичность, в стехиометрическом (то есть близком к оптимальному) сохраняется уверенная тяга при средней нагрузке, в форсированном — двигатель развивает максимальную мощность. Во время движения автомобиля блок управления двигателем постоянно меняет эти режимы, в зависимости от ситуации.

Режимы работы непосредственного впрыска

Режим обедненной смеси используется, когда нагрузка на двигатель минимальна: при движении на постоянной или снижающейся скорости.

Обычное, так называемое стехиометрическое (оптимальное) соотношение масс воздуха и бензина в камере сгорания, необходимое для успешного зажигания и сгорания топливо-воздушной смеси — 14.7:1. Однако в вышеописанных ситуациях, то есть когда обороты двигателя быстро или постепенно замедляются, его можно без вреда для двигателя менять в пользу меньшего количества топлива. Таким образом, в режиме обедненной смеси количество долей воздуха может достигать 65 (а иногда и более) к одной доле топлива.

В сложной системе непосредственного впрыска повышается вероятность сбоя. Известны случаи отзыва автомобилей, оснащенных системами впрыска этого типа

Стехиометрический режим используется при равномерном движении с постоянной нагрузкой на двигатель. В этом режиме воздух и топливо смешиваются в идеальной пропорции, что способствует полному сгоранию.

В форсированном режиме содержание топлива в смеси слегка превышено. Это способствует развитию максимальной мощности, что целесообразно, к примеру, для нагруженного автомобиля, движущегося в гору.

Авторская статья «Что такое LSPI?» на сайте инженерной-технологической компании Механика

Для начала определимся с терминологией – чтоб было понятнее. Во-первых, речь в этой заметке пойдет исключительно о бензиновых моторах. Во-вторых, двигатель с распределенным впрыском – в нем форсунки подают топливо во впускные каналы головки блока. А двигатель с непосредственным впрыском – где бензин распыляется прямо в цилиндр, минуя впускной коллектор.

Что такое LSPI? Это аббревиатура от английского выражения «Low Speed Pre-Ignition». На русский это можно перевести так: «Преждевременное воспламенение на малых оборотах» и под этим понимают аномальное сгорание, характерное для современных бензиновых двигателей с непосредственным впрыском и турбонаддувом, приводящее к катастрофическим повреждениям деталей.

При «нормальном» воспламенении смесь в цилиндре поджигается искрой от свечи. А вот в случае LSPI сгорание начинается задолго до того, как между электродами проскочит искра, что вызывает резкий скачок давления в цилиндре. Ударная волна запросто может повредить или даже разрушить поршень.

На фото: Картина разрушения поршня при LSPI – типично детонационная: ломаются перемычки между кольцами.

Почему LSPI характерно именно для непосредственного впрыска?

Преждевременное воспламенение характерно для двигателей с непосредственным впрыском, не в последнюю очередь, из-за высокой степени сжатия и слишком малого времени на испарение топлива. Так, у типичного мотора с непосредственным впрыском, на распыление и испарение бензина отведено менее 160° поворота коленвала. Если сравнивать с двигателем карбюраторным или с распределенным впрыском – там аналогичный процесс занимает более чем 320° поворота коленвала. И вот это сочетание – «сильное» сжатие и короткое время распыления делает двигатели с непосредственным впрыском особо чувствительным случаям аномального сгорания, таким как LSPI.

Вот, для сравнения, величина степени сжатия в двух американских двигателях:
Двигатель Степень сжатия

GM, модели LT1, непосредственный впрыск

11,5:1

GM 3.8V6, распределенный впрыск

8,5:1

Как распыление и испарение топлива влияют на LSPI?

Стоит отметить, что в цилиндрах горит не жидкое топливо. Бензин, наливаемый в бак, это разумеется – жидкость, но, чтобы его сжечь надо, чтоб он превратился в пар. Поэтому жидкий бензин, в виде облака из мельчайших капель, распыляется в горячий и завихренный поток воздуха в цилиндре. Однако, из-за очень короткого времени, отведенного на этот процесс, часть топлива не успевает испариться и сгореть. Часть такого несгоревшего топлива оказывается в зазоре между жаровым поясом поршня и стенкой цилиндра, где смешивается с моторным маслом, смазывающим стенки цилиндра. Из этой смеси легко образуются отложения нагара (смеси сажи и прочих химически активных веществ), приводящие к LSPI. А мельчайшие частички нагара, отделяющиеся от этого слоя, становятся очагами преждевременного воспламенения.

Как химический состав масла влияет на LSPI?

Тем не менее, поскольку двигатели с непосредственным впрыском позволяют сократить расход топлива и снизить выбросы вредных веществ, Министерство энергетики США предоставило исследовательский грант Национальной лаборатории Оук Ридж – для определения способов и методов преодоления подобных недостатков.

В свою очередь, лаборатория Оук Ридж заключила контракт с компанией Driven Racing Oil, которая могла «смешивать» небольшие партии экспериментальных моторных масел разного состава и хорошо «разбиралась» в устройстве двигателей. А Driven Racing Oil, в свою очередь, в сотрудничестве с частной образовательной организацией «Университет EFI», изучающей системы впрыска с электронным управлением, провела стендовые исследования на двигателе с непосредственным впрыском (GM, модели LT1) для подбора масел нужной рецептуры, настройки и конструкторских доработок подобных форсированных двигателей.

Так вот, исследователи установили, что состав и количество моющих присадок в моторном масле очень сильно влияет на появление LSPI. Так, уменьшение количества кальция и полное удаление натрия сокращает частоту и «степень тяжести» LSPI, да и других случаев аномального сгорания. Повышение содержания молибдена тоже способствует снижению тенденции к самовоспламенению.

Была выдвинута гипотеза о том, что присадки на основе кальция и натрия реагируют с топливом, в результате чего образуются химические соединения с октановым числом, ниже чем у бензина или моторного масла и, поэтому, плохо сопротивляющиеся детонации. Поэтому подобные «смешанные» молекулы становятся запальными ядрами для того типа аномального сгорания, которое мы и называем LSPI – низкоскоростным преждевременным воспламенением. Эта гипотеза получила подтверждение после того, как в двигатель залили экспериментальное масло – без натриевой присадки и с существенно меньшим содержанием кальция. Мотор на нем работал безукоризненно.

Выводы исследователей удалось подтвердить и натурными экспериментами. Компания Driven Racing Oil поработала с двигателями гоночных автомобилей Mini, участвующих в британской серии Mini Challenge. Форсированные двигатели этих автомобилей, с турбонаддувом и непосредственным впрыском, часто страдали от LSPI, поскольку их заправляли обычным «дорожным» моторным маслом, содержавшим более 2500 ppm (частиц на миллион) моющей присадки на основе кальция. Как только организаторы серии поняли, что частые поломки поршней вызваны LSPI, то, по совету поставщика топлива Sonoco, обратились в Driven Racing Oil. В результате «стандартное» моторное масло было заменено на специальное – XP9 Racing Oil, в котором содержится всего лишь 250 ppm кальциевой присадки и добавлено 1000 ppm молибдена. Это позволило устранить поломки, вызванные LSPI.

На фото: сравнение химического состава моторных масел

Почему малые обороты?

Вы можете спросить, почему основной упор делается на малые обороты двигателя. А вот почему. На малых оборотах турбулентность «входящего» воздуха гораздо меньше, чем на высоких. В подобном режиме бензин хуже испаряется и перемешивается с воздухом.

Представьте себе – автомобиль стоит на светофоре, а двигатель работает на холостом ходу, без нагрузки. При этом смесь завихряется меньше, а температура поршня ниже. Все это, вместе взятое, мешает качественному распылению и испарению бензина. Теперь добавьте сюда противодавление от турбокомпрессора, и вы получите эффект ухудшенной продувки цилиндра плохо приготовленной топливной смесью. Поэтому нет ничего удивительного в том, что в двигателях с непосредственным впрыском моторное масло сильнее разбавляется топливом, чем в двигателях с распределенным впрыском!

Длительная работа на холостом ходу и, следующее за ней, резкое ускорение под полным дросселем создают идеальные условиях для LSPI – смешению топлива и моторного масла, с последующим нарушением сгорания и внезапными скачками давления в цилиндре.

Еще одно доказательство этой теории было найдено в результате недавнего эксперимента в «Университете EFI». Тамошние исследователи, используя V-образную «восьмерку» GMC LT1, с непосредственным впрыском, проверила два вида топлива: VP C10 и VP C20. Несмотря на схожее октановое число (100 – для C10 и 98 – для C20), оба бензина различались по степени испаряемости. Чем выше температура испарения, тем труднее бензин превращается в пар. И наоборот, чем ниже эта температура – тем легче он испаряется.

Интересно, что более высокие температуры испарения бензина С10 заставляют двигатель детонировать больше, чем работа на бензине С20, с меньшим октановым числом и меньшей температурой разгонки. Это явление доказало, что «не испарившееся/жидкое топливо», способствует случаям аномального сгорания, таким как LSPI.

Как бороться с подобным явлением?

Проведенные исследования показали, какие присадки в масле способствуют LSPI, а какие – предотвращают. Значит, подобрав соответствующую рецептуру, можно получить моторное масло, защищающее от LSPI, без ущерба от повышенного износа двигателя. Поэтому API разработала новую спецификацию – SN Plus, для поколения масел, которое должно устранить проблемы, связанные с LSPI. К слову сказать, масла GM, серии dexos, тоже доработаны с учетом защиты от LSPI.

Ну и в завершение надо добавить, что следует избегать использования масел с высоким уровнем кальциевых и натриевых присадок, в бензиновых двигателях с непосредственным впрыском. Поскольку такие моторы очень чувствительны к качеству применяемых бензина и масла, то к выбору эксплуатационных жидкостей надо подходить очень тщательно.

ХОТИТЕ СТАТЬ АВТОРОМ?

Пришлите свою статью


Что означает прямой впрыск топлива?

Direct Fuel Injection — это не что иное, как инжектор, подающий топливо непосредственно в цилиндр двигателя внутреннего сгорания. Это относительно новый концепт — впервые он появился в середине 90-х годов в дизельных двигателях, но в последнее время получил широкое распространение в бензиновых двигателях. Возможность подачи топлива непосредственно в цилиндр позволяет снизить выбросы, снизить температуру головки блока цилиндров, увеличить мощность и улучшить экономию топлива.Скорее всего, если вашему автомобилю всего несколько лет, он оснащен двигателем с прямым впрыском.

Желтый компонент на этих фотографиях — топливные форсунки

Традиционный метод подачи топлива представлял собой впрыск топлива через порт, при котором топливные форсунки помещались во впускные каналы и распылялось топливо через заднюю часть клапанов перед подачей в цилиндр. Это было стандартом с тех пор, как был введен впрыск топлива, пришедший на смену карбюраторам в начале 90-х годов. Так почему же производители должны перейти с впрыска через порт на прямой впрыск? Прямой впрыск обеспечивает больший контроль во время процесса подачи топлива за счет распыления распыляемого топлива в цилиндре, обеспечивая лучшее распределение топлива по камере сгорания и позволяя реализовать расширенные протоколы управления двигателем, такие как Variable Valve Timing.

Хотя на бумаге прямой впрыск звучит прекрасно, у него есть некоторые недостатки. Наиболее распространенная проблема, связанная с прямым впрыском, — это агрессивное количество углерода, которое накапливается во впускных каналах и на задней части клапанов. Ранее мы упоминали, что предшествующим методом подачи топлива был впрыск через каналы, при котором топливо распылялось во впускных каналах, а затем поступало в цилиндры. В системах подачи топлива этого поколения не наблюдалось такого большого накопления углерода, потому что моющие средства в бензине помогали поддерживать эти отверстия и клапаны в чистоте.

Углерод, который накапливается на задней части этих впускных клапанов

Другая проблема с прямым впрыском заключается в том, что мелкодисперсное топливо не любит более низких температур сгорания, поэтому производительность и эффективность сильно снижаются, пока двигатель не достигнет идеальной рабочей температуры. Последний недостаток — сложность, которую эти системы добавляют к производственному движку. Для прямого впрыска требуется дополнительный топливный насос высокого давления, а также более мощные форсунки большего размера.Дополнительный топливный насос — это еще одна потенциальная точка отказа, когда дело касается топливной системы. Замена форсунок для тяжелых условий эксплуатации также может быть немного дороже, чем замена стандартных.

При всем вышесказанном, транспортная отрасль — это игра в числа, которая вращается вокруг выбросов и топливной экономичности, поэтому есть несколько автомобильных компаний, которые начали производить двигатели как с портовым, так и с топливным впрыском. Эти двигатели сочетают в себе оба метода подачи топлива и позволяют еще больше настраивать двигатель, охлаждение, эффективность и выбросы.Впрыск через порт помогает свести накопление углерода к минимуму. Инъекция через порт также поможет при холодном пуске и последующих периодах прогрева. Эти механизмы обеспечат лучшее из обоих миров для преимуществ каждого метода доставки; единственное предполагаемое падение — это потенциальные точки отказа, добавленные к топливной системе.

Хотя идеальной конструкции двигателя не существует, достоинства двигателя с прямым впрыском намного перевешивают недостатки, поэтому не торопитесь обменивать свой автомобиль на автомобиль с впрыском в порт или с двойным впрыском.Есть еще кое-что, что вы можете сделать в краткосрочной перспективе, чтобы избежать некоторых долгосрочных головных болей, связанных с двигателем с прямым впрыском. Первый — использовать полностью синтетическое (не обычное или полусинтетическое) моторное масло в двигателе. Полностью синтетические масла сопротивляются разрушению и с меньшей вероятностью испаряются в картере двигателя — это испарение приведет к тому, что больше масла пройдет через систему выбросов и попадет во впускные отверстия в виде углерода. Другой мерой было бы запускать специализированный сервисный комплект для индукционного впрыска с прямым впрыском через ваш двигатель каждые 16 месяцев или 20 000 миль.Наша услуга индукции прямого впрыска (это полный рот), которую мы выбрали в Auto Stop, — это многогранный комплект BG. Первая часть набора состоит из распыления раствора для чистки портов в мелкий туман и его пропускания через верхнюю часть приемного отверстия транспортного средства в течение 45 минут. Следующая часть включает в себя очистку дроссельной заслонки на корпусе дроссельной заслонки от мусора или загрязнений. Наконец, в комплект входит моющее средство, которое покрывает топливный бак и очищает кончики форсунок во время нормальной езды.

Многие из этих нововведений в области выбросов хорошо выглядят в теории и на бумаге, но после тысяч и тысяч миль эти высокотехнологичные двигатели могут оказаться менее прощающими, когда дело доходит до обслуживания. При ненадлежащем обслуживании эти механизмы могут, по иронии судьбы, препятствовать тому, для чего они были разработаны, — топливной эффективности, мощности и снижению выбросов. Если у вас есть какие-либо вопросы относительно обслуживания вашего двигателя прямого впрыска, не стесняйтесь обращаться к одному из наших опытных консультантов по обслуживанию в Арлингтоне или Фолс-Черч.Мы обслуживаем все марки и модели автомобилей с прямым впрыском и соблюдаем рекомендуемые производителем интервалы обслуживания.

Эффективность двигателя с прямым впрыском

| HowStuffWorks

Двигатели с непосредственным впрыском топлива буквально дают вам большую отдачу от затраченных средств по двум основным причинам. Во-первых, они используют более «бедное» соотношение топливовоздушной смеси. Во-вторых, то, как топливо распределяется внутри камеры, позволяет ему гореть более эффективно. Давайте кратко рассмотрим каждый из них.

Отношение воздуха к топливу при сгорании в двигателе будет иметь определенные предсказуемые эффекты на рабочие характеристики двигателя, выбросы загрязняющих веществ и топливную экономичность.Когда количество воздуха в смеси велико по сравнению с количеством топлива, это называется «бедной» смесью. В обратном случае это называется «богатой» топливной смесью.

В двигателях с прямым впрыском используется смесь из 40 или более частей воздуха и одной части топлива, записанная как 40: 1. Это сопоставимо с соотношением 14,7: 1 в нормальном бензиновом двигателе. Более бедная смесь позволяет сжигать топливо гораздо более консервативно.

Второй плюс для двигателей с прямым впрыском заключается в том, что они могут более полно сжигать свое топливо.Топливо может быть впрыснуто прямо там, где камера сгорания наиболее горячая — в бензиновом двигателе, это означает, что оно попадает близко к искре. В традиционном бензиновом двигателе топливно-воздушная смесь широко рассеивается внутри камеры, оставляя значительную часть несгоревшей и, следовательно, неэффективной.

Так что насчет остального двигателя? Представляют ли двигатели с прямым впрыском радикальный отход от известных и общепринятых принципов внутреннего сгорания?

Короткий ответ: «нет.«Безусловно, в двигателях с прямым впрыском используется несколько специальных приспособлений и технических приемов:

  • Отличное оборудование, называемое топливной рампой , , для распределения топлива по форсункам.
  • Специальное программирование для компьютера управления двигателем. расчеты расхода, размера капель топлива, контроля выбросов и других вещей, о которых вы не хотите думать во время вождения.
  • Специальные каталитические нейтрализаторы для работы с печально известными высокими выбросами оксидов азота (NOx) двигателями с прямым впрыском топлива Несмотря на проблему NOx, бензиновые двигатели с прямым впрыском получают высокие оценки, в частности, за их более чистые выбросы.Именно по этой причине многие производители двигателей потрудились над созданием двухтактных версий бензинового двигателя с непосредственным впрыском. В то время как четырехтактные двигатели используются в большинстве автомобилей и мотоциклов, разрешенных для использования на улицах, двухтактные двигатели преобладают, когда речь идет о внедорожных мотоциклах, двигателях небольших лодок и гидроциклов, а также многих мотоциклах, которые служат основным транспортным средством в развивающихся странах.

    В следующем разделе мы рассмотрим, почему впрыскивание топлива прямо в камеру сгорания под высоким давлением не приводит к взрыву двигателя.

    Прямой впрыск бензина уже здесь, и пора познакомиться

    Когда мы вступили в 2014 год, промышленность гудела от аббревиатуры «GDI», иначе известной как прямой впрыск бензина. Различие между «бензином» имеет большое значение, поскольку прямой впрыск существует в дизельной промышленности с 70-х годов. Хотя изобретение GDI для аэрокосмической промышленности, а также его первое использование на легковых автомобилях предшествовало этому, на самом деле он не стал популярным до середины 90-х годов. GM была в авангарде в 2003 году, когда представила новые четырехцилиндровые двигатели Ecotec, в которых использовалось так называемое Spark Ignition Direct Injection (SIDI).Несколько лет спустя появился 3,6-литровый LLT V-6, и, конечно же, GM снова попала в заголовки газет, выпустив два самых мощных малоблочных V-8 поколения V с прямым впрыском, когда-либо созданных.

    Технологии, с которыми конкурируют только 4,5-литровый V-8 Ferrari 458 и 5,2-литровый V-10 Audi / Lamborghini, размещены между крыльями Chevrolet Corvette Stingray ’14-15 ‘и Corvette Z06 ’15. С 1985 по 2013 год малоблочные автомобили Chevy питались по технологии «портового топлива», и именно здесь начинается раскол в современном мире заправки топливом! Оглядываясь назад на последний раунд GM V-8 (Gen III / IV), топливо всегда впрыскивалось в двигатель через точки во впускном коллекторе и стреляло во впускной клапан, прежде чем оно попадало в камеру сгорания.Этот метод заставит капли топлива цепляться за стенки впускного отверстия, сидеть на задней части впускного клапана и изо всех сил пытаться смешаться с приближающимся движением заряда воздуха, который только что был проглочен. Поскольку производители комплектного оборудования продолжают усердно работать над улучшением распределения каждой капли топлива, мы можем видеть, как эта конструкция имеет свои недостатки.

    В бензиновых двигателях с прямым впрыском (GDI) топливовоздушная смесь образуется непосредственно в камере сгорания. Не нужно беспокоиться о том, насколько эффективно топливо распыляется или проходит через головку блока цилиндров.Вместо этого через впускной клапан в камеру сгорания попадает только свежий воздух. Топливо впрыскивается в воздушный поток под очень высоким давлением. Результат — оптимальный эффект завихрения и улучшенное охлаждение камеры сгорания. Это, в свою очередь, открывает путь к более высокой компрессии и большей эффективности, что ведет к снижению расхода топлива, увеличению мощности и существенному улучшению динамики движения.

    Просмотреть все 14 фотографий Просмотреть все 14 фотографий Вот реальный узел форсунки GDI в сборе.Обратите внимание на удлиненный корпус, необходимый для проникновения в камеру сгорания. См. Все 14 фотографий. При давлении 2175 фунтов на квадратный дюйм форсунки OEM LT1 расходуют примерно 160 фунтов / час, что необходимо для распыления почти такого же количества топлива, но только за 25 фунтов на квадратный дюйм. процентов времени, так как форсунки в исходящем LS3 нужны. Модификация форсунок для увеличения потока имеет некоторые непредвиденные последствия для характеристик потока. В настоящее время мы находимся во власти рынка запчастей, чтобы разработать инжектор с более высокой пропускной способностью, если вы планируете производить более 1000 л.с. без дополнительной заправки.Посмотреть все 14 фотографий На первый взгляд новый двигатель GM LT1 очень похож на LS, но есть немало изменений, главное из которых — способ подачи топлива в камеру сгорания. Смотреть все 14 фотографий

    Перемещение топливной форсунки к камере сгорания имеет много последствий с точки зрения дизайна. Инжектор должен выдерживать температуру свыше 1000 градусов, а пространство для установки должно быть ограничено. Тем не менее, форсунки должны быть достаточно прочными с точки зрения расхода и давления, потому что форсунка может распылять только при закрытом выпускном клапане.По сравнению с впрыском в порт примерно 25 процентов времени на один оборот коленчатого вала приходится на то, чтобы та же масса топлива попала в камеру. Кроме того, форсунки должны выдерживать давление в цилиндре 800–1500 фунтов на квадратный дюйм, а не только 14,7 фунтов на квадратный дюйм атмосферного давления или даже 30 фунтов на квадратный дюйм наддува в коллекторе.

    В двигателях с прямым впрыском используется давление топлива от 500 до 2800 фунтов на квадратный дюйм, чтобы выжать столько объема, сколько необходимо за такое короткое окно, и идти в ногу с давлением в цилиндре. При давлении 2175 фунтов на квадратный дюйм заводские форсунки откачивают 160 фунтов / час с использованием входа 64 В и низкого импеданса (пиковое и удерживаемое) в LT1.Для сравнения, двигатель LSx будет изменять время включения или рабочий цикл форсунки от 3 до 85 процентов при постоянном давлении топлива 58 фунтов на квадратный дюйм, входном напряжении 12 В и высоком импедансе (насыщение). Вместо типичного распыления с вентилятором, очень мелкие капли форсунок GDI нацелены на «топливный бак» в центре поршня. Конструкция днища поршня имеет решающее значение для правильного сгорания в двигателе GDI. В приложениях с высоким наддувом даже хорошо спроектированный поршень имеет проблемы с удержанием топлива от стенки цилиндра (подробнее об этом позже).

    Помимо увеличения расхода топлива, эффективность прямого впрыска обеспечивает более высокую степень статического сжатия. LT1 составляет 11,5: 1, почти на целый пункт выше LS3, в то время как LT4 с наддувом составляет 10,0: 1 (почти на полный балл выше, чем LS9 с наддувом). GDI использует неиспользованный охлаждающий потенциал топлива, скрытую теплоту парообразования, снижая температуру в камере сгорания. Более холодная камера означает большее сопротивление удару и возможность более высокого сжатия.Преимущество скачка сжатия очевидно на кривой крутящего момента LT1 от 2 000 до 5 000 об / мин, что составляет конкуренцию LS7 с объемом двигателя 427 кубических дюймов.

    Посмотреть все 14 фотографий Спереди и по центру находится механический топливный насос, который по сигналам кулачка распределительного вала и блока управления двигателем E92 изменяет давление топлива от 500 до 2800 фунтов на квадратный дюйм для достижения заданного соотношения воздух / топливо. На выставке SEMA 2013 на выставке SEMA 2013 компания COMP Cams представила линейку вторичных распределительных валов Gen V с пятью различными кулачками топливного насоса. На диаграмме вы можете видеть, что они варьируются от стокового до 74% улучшения потока при использовании 3-5 бросков и 5-7.5 мм подъема. Это ключ к значительному увеличению мощности (без расхода топлива). См. Все 14 фотографий См. Все 14 фотографий Wiseco и другие производители поршней на вторичном рынке также должны использовать топливный бачок в центре поршня для улавливания топлива, выходящего из форсунок GDI. . В противном случае топливо могло бы попасть к стенке цилиндра, вдали от пламени и сжатия. См. Все 14 фотографий. При использовании впрыска метанола, гоночного газа или какой-либо их комбинации на заводской топливной системе было достигнуто значение к северу от 900 об / ч. с кулачками COMP.Конечно, также потребовались двигатель 416ci, перенесенные головки цилиндров, наддув и значительная настройка динамометрического стенда.

    Двигаясь дальше от камеры сгорания, важно отметить несколько других ключевых отличий между прямым впрыском и прямым впрыском. В задней части двигателя, за впускным коллектором, находится массивная маленькая штуковина из нержавеющей стали, которая представляет собой механический топливный насос высокого давления. Насос приводится в действие подъемником уникального вида, который перемещается по треугольному выступу в задней части распределительного вала. Это трио кулачков соответствует трем насосам на оборот кулачка.Из-за этой конструкции объем топлива фиксируется в зависимости от числа оборотов в минуту. К счастью, такие производители, как COMP Cams, могут использовать различные профили лепестков для увеличения расхода топлива для тех, кто хочет получить значительно больше мощности, чем стандартные. Как упоминалось ранее, давление топлива является динамическим — для увеличения или уменьшения количества топлива. Давление топлива регулируется внутренним электромагнитным клапаном, который принимает команды от контроллера E92 (ECM) в зависимости от скорости и нагрузки. Насос высокого давления питается от насоса низкого давления, который расположен в топливном баке, как это было традиционно в предыдущие годы.

    Итак, теперь, когда у нас есть базовый обзор GDI, что происходит, когда мы начинаем стремиться к увеличению мощности? Одно из препятствий — топливные форсунки. Чтобы получить мощность, мы должны смешать правильную массу топлива с пропорциональной массой воздуха. Установка нагнетателя наверняка увеличит массу воздуха, что потребует большей массы топлива. Пиковые и удерживающие (с низким импедансом) форсунки используют высокий ток для быстрого открытия, и как только форсунка открывается, она медленно снижает силу тока до тех пор, пока не будет доставлена ​​масса топлива.В это время форсунка ограничена общим расходом топлива. Кроме того, она также ограничена рисунком распыления. Инжектор имеет шесть стратегически расположенных микроскопических отверстий, направленных на определенные части камеры сгорания. Инженеры GM потратили бесчисленное количество часов на моделирование камеры, чтобы определить, куда направить отверстия форсунок для получения оптимальной топливно-воздушной смеси. Любые несмешанные капли образуют лужи, которые прекращают горение, увеличивают выбросы и, в конечном итоге, приводят к снижению производительности.Поэтому, когда несколько компаний послепродажного обслуживания попытались пробурить заводские форсунки для увеличения потока, это привело к непредвиденным негативным последствиям. Пока такая компания, как Injector Dynamics, не представит на вторичном рынке форсунки GDI, производители ограничены мощностью около 1000 лошадиных сил (с вышеупомянутыми лепестками топливного насоса COMP Cams).

    Настройка — еще одно важное соображение для контроллера E92 C7. Такие вещи, как управление крутящим моментом, приобретают совершенно новый смысл, поскольку калибровка больше не основана на потоке воздуха и TPS.Вместо этого компьютер в качестве цели использует крутящий момент. Ухудшение или закрытие дроссельной заслонки может быть симптомом этого недоразумения. Кроме того, решающее значение имеют синхронизация инжектора и кулачка. Имея короткий промежуток времени для запуска заряда, вы можете легко отправить сырое топливо из выхлопной трубы или вымыть покрытые масляной пленкой стенки цилиндра (это плохо!). Калибровку компьютера лучше доверить тому, кто имеет опыт работы с двигателями с прямым впрыском.

    Просмотреть все 14 фото

    Прямой впрыск топлива: краткая история

    Концепция прямого впрыска топлива существует с 1925 года, когда ее изобрел шведский инженер Йонас Хессельман.Во время Второй мировой войны некоторые истребители оснащались системой непосредственного впрыска топлива для предотвращения сваливания во время высокоскоростных маневров. После Второй мировой войны автомобильные компании обнаружили, что механический впрыск топлива в цилиндр был практически невозможен при использовании этой технологии в то время. Несмотря на эти неудачи, кажется, что ошибки были устранены, и концепция предложила множество улучшений для современных операций.

    Историческая перспектива

    Система впрыска через корпус дроссельной заслонки была одной из первых отечественных систем впрыска топлива, которые вышли на рынок и легко заменили карбюратор в двигателях существующих конструкций.TBI требовался простой компьютер, способный управлять несколькими форсунками, распыляющими воздух, поступающий во впускной коллектор. Датчик положения дроссельной заслонки (TPS), датчик температуры охлаждающей жидкости (CTS), датчик абсолютного давления в коллекторе (MAP) и датчик кислорода (O2) были основными датчиками, необходимыми для точного контроля топлива в двигателе. Топливо подавалось с помощью топливного насоса в баке. Хотя TBI был чрезвычайно простым, капли фурела накапливались во впускном канале, что приводило к «мокрому потоку», который создавал неравномерное распределение по цилиндрам.Чтобы уменьшить влажный поток, автопроизводители ввели многопортовый впрыск. Многопортовые системы впрыска смогли синхронизировать впрыск топлива при открытии впускного клапана. Распределение топлива между цилиндрами оставалось неравномерным.

    Прямой впрыск топлива

    Поскольку стандарты выбросов продолжали ужесточаться, системы прямого впрыска бензина (GDFI) стали более доступными. Системы GDFI имеют ту же базовую настройку, что и обычные системы MPI. В большинстве GDFI для подачи топлива в насос высокого давления используется насос в баке.PCM контролирует насос высокого давления и может изменять количество топлива, поступающего в насос. Большинство насосов создают давление топлива около 2000 фунтов на квадратный дюйм, чтобы преодолеть давления, возникающие при сгорании и сжатии, и впрыснуть относительно большой объем топлива за короткий промежуток времени. Для систем GDFI требуются пьезоэлектрические топливные форсунки, которые могут открывать клапаны игл форсунок при давлении более 2000 фунтов на квадратный дюйм.

    Преимущества прямого впрыска бензина

    Самыми непосредственными преимуществами впрыска бензина непосредственно в цилиндр двигателя являются повышенная экономия топлива и мощность.Есть много вещей, которые могут повлиять на использование системы прямого впрыска бензина, поэтому в этой статье основное внимание будет уделено основам. Двигатель GDFI может работать в стехиометрическом режиме (соотношение воздух / топливо 14,7: 1 по массе теоретически производит только углекислый газ (CO2) и воду (h3O)) на полной мощности (соотношение воздух / топливо от 13: 1 до 14: 1 до достичь максимальной мощности.) и ультра-обедненный (соотношение воздух / топливо варьируется в зависимости от автомобиля и может превышать 50: 1) режимах. Стратегия работы с распределенным впрыском топлива (FSI) также может повысить экономию топлива.Стратифицированное соотношение воздух / топливо может быть создано путем впрыска бедной топливно-воздушной смеси в цикл рабочего такта сразу после того, как происходит начальное «богатое» сгорание. Многослойная система имеет ограниченное применение из-за множества проблем, таких как повреждение выпускного клапана. Прямой впрыск бензина также позволяет инженерам фактически запустить двигатель, впрыскивая топливо в цилиндр, находящийся в состоянии покоя, во время рабочего такта и зажигая его свечой зажигания. Это повторяется во всех цилиндрах в последовательности зажигания до тех пор, пока не будет достигнута частота вращения холостого хода.Это позволяет выключать двигатель на светофоре для экономии топлива и быстро запускать его снова. Наконец, скрытая теплота испаряет топливо и фактически охлаждает внутреннюю часть цилиндра, что увеличивает степень сжатия.

    Текущие проблемы прямого впрыска бензина

    Большинство систем прямого впрыска бензина можно диагностировать с помощью диагностического прибора. Самая последняя проблема — скопление нагара на уплотнениях впускных клапанов, вызывающее пропуски зажигания в цилиндрах. Большая часть накопления углерода может быть связана с масляным туманом из системы ПВХ и EGR.Наконец, механические топливные насосы высокого давления, по-видимому, являются ранней точкой отказа современных серийных автомобилей. Помните, что насос низкого давления должен работать правильно, чтобы насос высокого давления работал. Все специалисты по запчастям также должны знать, что многие производители могут потребовать полной замены топливной рампы при замене одной топливной форсунки из соображений безопасности. Как и в случае с любой новой технологией, информационная система профессионального уровня жизненно важна для успешной диагностики исходной проблемы и завершения успешного ремонта.

    Электронные системы впрыска топлива для двигателей большой мощности

    Системы электронного впрыска топлива для двигателей большой мощности

    Ханну Яэскеляйнен, Магди К. Хаир

    Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
    Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

    Abstract : Ряд производителей тяжелых дизельных двигателей разработали собственные электронные системы впрыска топлива.Примеры включают в себя гидравлический инжектор с электронным управлением (HEUI) и системы с электронным управлением с механическим приводом (MEUI) от Caterpillar, а также ряд систем от Cummins, таких как система гидроаккумуляторных насосов (CAPS), системы впрыска Quantum CELECT, HPI и XPI.

    Введение

    В связи с повышенным спросом на снижение выбросов от дизельных двигателей, гибкость и улучшенные характеристики, предлагаемые электронным управлением, стали важным стимулом для многих производителей двигателей, которые начали внедрять системы впрыска топлива с электронным управлением в конце 1980-х — начале 1990-х годов.Важным инструментом снижения выбросов от дизельных двигателей, произведенных в этот период, была синхронизация впрыска топлива, которая могла изменяться в зависимости от скорости и диапазона нагрузки двигателя. В то время как время впрыска можно было изменять с помощью чисто механического подхода, электронное управление предлагало гораздо более гибкий и потенциально более простой способ достижения этого, а также предоставляло возможность введения ряда других желательных функций. Некоторые из первых систем впрыска топлива с электронным управлением в двигателях большой мощности появились в Detroit Diesel Series 92 в 1985 году и Series 60 в 1987 году. [2151] .Компания Caterpillar применила его к модели 3176 в 1988 году [2043] .

    Насосные форсунки, используемые в этих двигателях, хорошо поддались раннему внедрению электронных топливных форсунок с электромагнитным приводом. Конструкции соленоидных приводов того периода все еще были относительно большими и громоздкими, и насос-форсунка для тяжелого двигателя предоставляла для него достаточно места. Производителям потребовалось несколько лет, чтобы усовершенствовать конструкцию привода, чтобы сделать его достаточно компактным для использования в системах Common Rail для легких условий эксплуатации [2187] , а также для производства насос-форсунок для тяжелых условий эксплуатации Delphi E1 в 2000 году, который заменил громоздкий привод, устанавливаемый сбоку, с более компактной конструкцией, который может быть встроен в корпус форсунки.

    Производитель быстро понял, что электронное управление дает возможность не только управлять временем впрыска в соответствии со скоростью и нагрузкой, но и в соответствии с типом вождения автомобиля. В 1990-х годах было принято программировать контроллеры двигателей для регулировки момента впрыска для оптимизации расхода топлива в тяжелых дизельных двигателях, когда условия эксплуатации указывали на круиз по шоссе. В некоторых случаях это время впрыска противоречило тому, которое требовалось для соблюдения регулируемых пределов выбросов.

    Поскольку нормы выбросов продолжали ужесточаться, требования, предъявляемые к топливным системам, еще более возрастали, и этого было недостаточно просто обеспечить гибкость в управлении временем впрыска. Дополнительные движущие силы, которые подтолкнули эволюцию систем впрыска дизельного топлива, включали:

    • Сохранение точности синхронизации и дозирования топлива в течение ожидаемого срока службы двигателя предъявляет повышенные требования к повторяемости времени и количества впрыска, а также к долговечности форсунок.
    • Давление впрыска увеличено для поддержания теплового КПД двигателя и для некоторого снижения выбросов выхлопных газов.
    • Время отклика форсунки стало меньше, чтобы обеспечить предсказуемый впрыск небольших количеств впрыска. Это была важная функция для включения нескольких событий инъекции.
    • Лучшее управление открытием и закрытием форсунки для предотвращения неконтролируемых вторичных впрысков и обеспечения острого окончания впрыска. Это также было важно для обеспечения возможности множественных инъекций.
    • Повышенный механический КПД системы впрыска для достижения общей цели повышения КПД двигателя.

    Ряд крупных производителей двигателей разработали собственные, зачастую уникальные системы впрыска топлива. Ниже приведены примеры систем впрыска собственной разработки:

    • Системы насос-форсунок с электронным управлением Detroit Diesel Corporation, разработанные в 1980-х годах в сотрудничестве с подразделением GM Rochester Products.
    • Система насос-форсунок Caterpillar с гидравлическим приводом и электронным управлением.
    • Система впрыска HPI Cummins, разработанная в сотрудничестве со Scania.

    В других случаях крупные производители двигателей большой мощности могли приобретать запатентованные технологии и развивать концепции для своей собственной линейки двигателей. Примером может служить система насос-форсунок Bendix Diesel Engine Controls, лицензированная Cummins и используемая в насос-форсунках CELECT.

    Хотя в этой статье описывается эволюция электронных систем впрыска топлива для двух конкретных производителей двигателей — Cummins и Caterpillar, — следует признать, что это никоим образом не охватывает весь спектр систем впрыска, доступных в тяжелых дизельных двигателях.Топливные системы от таких поставщиков, как Bosch, Delphi, Siemens / Continental, Denso и других, также очень распространены.

    ###

    Четыре различных типа впрыска топлива

    Транспортные средства регулируют вашу скорость и ускорение, изменяя соотношение топлива и воздуха, поступающего в двигатель. Исторически этим занимались карбюраторы. Даже сегодня многие мотоциклы, генераторы и другие простые двигатели полагаются на углеводы для управления частотой вращения двигателя. Но это довольно примитивная технология, и с 1970-х годов система впрыска топлива позволила автомобилям стать более мощными и более экономичными.Конечно, технология существовала и раньше. Но только в этот раз это произошло потому, что оно зарекомендовало себя как лучший способ доставки топлива.

    Нам нравится впрыск топлива почти в каждом современном автомобиле. Но не все системы впрыска топлива созданы одинаково, и некоторые из них значительно превосходят другие. Какой тип у вашей машины? Какое влияние на характеристики вашего автомобиля оказывает тип используемых вами топливных форсунок? Читай дальше что бы узнать.

    Современные двигатели сильно отличаются от тех, что мы использовали 30 лет назад.Производители автомобилей вкладывают много времени и денег в разработку своих двигателей, и эти изменения происходили медленно в течение длительного периода времени. Когда система впрыска топлива впервые появилась на рынке, эта технология была модернизирована для двигателей, которые были разработаны для использования карбюраторов. Эта ранняя технология называлась впрыском топлива в корпус дроссельной заслонки , или TBFI. По мере совершенствования технологий мы перешли к с многоточечным впрыском топлива . Хотя эта технология все еще используется в некоторых автомобилях эконом-класса, наиболее популярным типом является многопортовый впрыск . Наконец, перспективной технологией является многопортовый впрыск . Прочтите, чтобы узнать о различиях между ними и о том, что это означает с точки зрения производительности и обслуживания.

    Впрыск топлива корпуса дроссельной заслонки

    Также называемый однопортовым, это был самый ранний тип впрыска топлива, появившийся на рынке. Все автомобили имеют впускной коллектор, через который в двигатель сначала поступает чистый воздух. TBFI работает, добавляя правильное количество топлива в воздух перед его распределением по отдельным цилиндрам.Преимущество TBFI в том, что он недорогой и простой в обслуживании. Если у вас когда-нибудь возникнет проблема с инжектором, вам нужно заменить только один. Кроме того, поскольку этот инжектор имеет довольно высокий расход, его не так просто засорить.

    Технически системы дроссельной заслонки очень прочные и требуют меньшего обслуживания. При этом впрыск дроссельной заслонки сегодня используется редко. Транспортные средства, которые все еще используют его, достаточно стары, поэтому обслуживание будет более серьезной проблемой, чем с новым автомобилем с меньшим пробегом.

    Еще один недостаток TBFI — неточность. Если вы отпустите педаль акселератора, в воздушной смеси, поступающей в ваши цилиндры, все равно будет много топлива. Это может привести к небольшой задержке перед замедлением или, в некоторых автомобилях, к выбрасыванию несгоревшего топлива через выхлопную трубу. Это означает, что системы TBFI не так экономичны, как современные системы.

    Многопортовый впрыск

    Многоточечный впрыск просто перемещал форсунки дальше вниз по направлению к цилиндрам.Чистый воздух поступает в первичный коллектор и направляется в каждый цилиндр. Инжектор расположен в конце этого порта, прямо перед тем, как он всасывается через клапан в ваш цилиндр.

    Преимущество этой системы в том, что топливо распределяется более точно, при этом каждый цилиндр получает свою собственную струю топлива. Каждая форсунка меньше и точнее, что позволяет снизить расход топлива. Обратной стороной является то, что все форсунки распыляют одновременно, а цилиндры срабатывают один за другим.Это означает, что у вас может быть остаток топлива между периодами впуска или у вас может возникнуть возгорание цилиндра до того, как форсунка сможет подать дополнительное топливо.

    Многопортовые системы

    отлично работают, когда вы путешествуете с постоянной скоростью. Но когда вы быстро ускоряетесь или убираете ногу с дроссельной заслонки, такая конструкция снижает либо экономию топлива, либо производительность.

    Последовательный впрыск

    Системы последовательной подачи топлива очень похожи на многопортовые системы.При этом есть одно ключевое отличие. Последовательная подача топлива — раз. Вместо того, чтобы все форсунки срабатывали одновременно, они подают топливо одна за другой. Время согласовано с вашими цилиндрами, что позволяет двигателю смешивать топливо прямо перед тем, как клапан открывается, чтобы всасывать его. Такая конструкция позволяет улучшить экономию топлива и производительность.

    Поскольку топливо остается в порту только на короткое время, последовательные форсунки имеют тенденцию служить дольше и оставаться более чистыми, чем другие системы.Благодаря этим преимуществам на сегодняшний день наиболее распространенным типом впрыска топлива в транспортных средствах являются последовательные системы.

    Единственным небольшим недостатком этой платформы является то, что она оставляет меньше места для ошибок. Топливно-воздушная смесь всасывается в цилиндр только через мгновение после открытия форсунки. Если он грязный, забитый или не реагирует, ваш двигатель будет испытывать нехватку топлива. Форсунки необходимо поддерживать на максимальной мощности, иначе ваш автомобиль начнет работать с неровностями.

    Прямой впрыск


    Если вы начали замечать закономерность, вы, вероятно, догадались, что такое прямой впрыск.В этой системе топливо впрыскивается прямо в цилиндр, полностью минуя воздухозаборник. Производители автомобилей премиум-класса, такие как Audi и BMW, хотят убедить вас, что прямой впрыск является новейшим и лучшим вариантом. Что касается характеристик бензиновых автомобилей, они абсолютно правы! Но эта технология далеко не нова. Он использовался в авиационных двигателях со времен Второй мировой войны, и почти все дизельные автомобили имеют непосредственный впрыск, потому что топливо намного гуще и тяжелее.

    В дизельных двигателях прямой впрыск очень надежен.Доставка топлива может потребовать много злоупотреблений, а проблемы с обслуживанием сведены к минимуму.

    В бензиновых двигателях непосредственный впрыск применяется почти исключительно в автомобилях с высокими характеристиками. Поскольку эти автомобили работают с очень точными параметрами, особенно важно поддерживать вашу систему подачи топлива. Несмотря на то, что автомобиль будет продолжать работать в течение долгого времени, если им пренебречь, его характеристики быстро снизятся.

    Когда использовать очиститель топливной форсунки

    Вы должны пропускать через двигатель баллончик с разбавленным очистителем топливных форсунок несколько раз в год, чтобы предотвратить накопление нагара.Если у вас старый автомобиль, который не работает так хорошо, как раньше, может потребоваться более агрессивное решение. Для получения дополнительной информации о лучшем очистителе топливных форсунок, который вы можете купить, ознакомьтесь с нашим руководством для покупателей.

    Когда заменять топливные форсунки

    У дроссельной заслонки и многопортовых систем есть несколько ключевых признаков неисправного инжектора. Часто автомобилю будет трудно заводиться, и он будет сжигать намного больше топлива. У вашего автомобиля будет намного меньше мощности, чем когда он был новым. Поскольку форсунки со временем изнашиваются, трудно заметить постепенное снижение производительности.При этом ваш механик сможет обнаружить проблему с доставкой топлива во время базовой проверки.

    При последовательном и прямом впрыске признаки более очевидны. Вы заметите грубый холостой ход, и автомобиль может вибрировать и дребезжать сильнее, чем обычно. Вам может быть трудно разогнаться до полных оборотов, а ускорение может иметь более «агрессивный» звук.

    Форсунки

    играют решающую роль в работе вашего автомобиля, и важно понимать, как они работают в вашем конкретном автомобиле.Теперь, когда вы знаете четыре типа, вам будет легче предпринять соответствующие шаги, чтобы обеспечить их работу в течение многих лет.

    Привет читателям ShedHeads! Меня зовут Джеймс Кеннеди, и мне, безусловно, нравилось писать о моем любимом снаряжении для активного отдыха на протяжении многих лет. Хотя я веду этот блог только с 2017 года, я всю жизнь увлекался отдыхом. И хотя мне, безусловно, нравится делиться своим мнением со всеми вами, мне еще больше нравится, когда я слышу ваши отзывы! Если вы хотите связаться со мной по поводу того, что я написал, свяжитесь со мной на Facebook или на нашей странице контактов вверху!

    Последние сообщения Джеймса Кеннеди (посмотреть все)

    Краткая история, плюсы и минусы

    Чтобы начать разговор о карбюраторе и впрыске топлива, нужно вспомнить самое начало двигателя внутреннего сгорания.С момента появления двигателя внутреннего сгорания нам был нужен способ подачи воздуха и топлива в цилиндр, где он мог бы воспламениться и, таким образом, дать нам полезную механическую энергию. Некоторые из первых двигателей полагались на простую капельницу топлива, но в конечном итоге появились более эффективные способы подачи топлива в цилиндр.

    Историческая перспектива

    Ранние карбюраторы основывались на потоке воздуха над жидким топливом или фитилем, собирающим пары топлива для воспламенения. Более поздние версии будут использовать принцип Бернулли для лучшего измерения количества топлива, поступающего в цилиндры, то есть воздух, проходящий через трубку Вентури, будет подавать топливо пропорционально количеству воздуха, поступающего во впускное отверстие.К тому времени, когда в начале 1990-х годов в США вымерли последние карбюраторные автомобили, впрыск топлива уже был задействован в полную силу.

    Впрыск топлива в том виде, в каком мы его знаем, на самом деле уходит корнями в первые двигатели 1880-х годов; однако его сложность не позволяла использовать его в любом масштабе до 1920-х годов, и он по-прежнему ограничивался дизельными двигателями с воспламенением от сжатия. Позже, в середине 1950-х годов, системы впрыска топлива появятся как в дизельных, так и в бензиновых двигателях, как в механической, так и в электронной версии.

    Первые электронные системы впрыска топлива, в которых использовалась дроссельная заслонка, просто заменили карбюратор. Портовый впрыск топлива поместил отдельные топливные форсунки ближе к каждому впускному клапану, который используется в большинстве современных автомобилей. Позже, подобно дизельным двигателям, некоторые бензиновые двигатели будут оснащаться прямым впрыском топлива, при котором топливо поступает непосредственно в цилиндр. Некоторые системы прямого впрыска топлива сосуществуют с системами распределенного впрыска топлива.

    Карбюратор против впрыска топлива: за и против
    • Выбросы и экономия топлива. Впрыск топлива, поскольку его можно более точно контролировать, приводит к более эффективному использованию топлива, снижению расхода топлива и меньшим выбросам, что является основной причиной замены карбюратора в 1970-х годах.
    • Мощность и производительность. Опять же, поскольку впрыск топлива и современные электронные элементы управления более точны, подачу топлива можно настроить в соответствии с требованиями водителя. Карбюраторы точны, но не точны, поскольку они не могут учитывать изменения температуры воздуха или топлива или атмосферного давления.
    • Стоимость и сложность. Будучи чисто механическими устройствами, карбюраторы уступают впрыску топлива в отношении стоимости и сложности. С помощью канистры очистителя карбюратора, простых ручных инструментов и, возможно, пары запасных частей, вы можете восстановить карбюратор на своем крыльце или на стоянке для отдыха. Принимая во внимание, что с впрыском топлива, даже с годами обучения и опыта и несколькими тысячами долларов на диагностическое оборудование, вам все равно понадобится эвакуатор, чтобы вывести вас с дороги, если ваша система сгорит на вас.Большинство небольших двигателей, таких как двигатели мотоциклов, газонокосилок и снегоуборочных машин, по-прежнему оснащены карбюраторами просто потому, что они не регулируются по выбросам, являются недорогими, простыми и надежными.

    Хотя карбюратор существует уже более века, впрыск топлива является явно более совершенной альтернативой, обеспечивающей лучшую мощность, экономию топлива и более низкие выбросы.