Задача с двумя неизвестными – Презентация на тему: «РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМ УРАВНЕНИЙ С ДВУМЯ НЕИЗВЕСТНЫМИ 9 КЛАСС Решение текстовых задач Демакова Ирина Павловна

Содержание

определение, алгоритм и методы решения, примеры

В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

Определение

Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

Ниже приведены несколько примеров:

  • 10x + 25y = 180.
  • x — y = 6.
  • -6x + y = 7.

Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

Решение задач

Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

Для наглядности объяснений подберем корни для выражения: y-x = 6.

При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

Приведем исходное равенство к следующему виду:

В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

  • 20y — 3x = 16;
  • -3x = 16−20y.

Оба равенства равносильны.

Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

Пример:

  • y — x = 6*2;
  • 2y — 2x = 12.

Оба уравнения также равносильны.

Учимся решать

Система уравнений с двумя неизвестными

Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

Для решения системы уравнений необходимо найти

пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

Решить подобные системы уравнений можно, применяя следующие методы.

Метод подстановки

Последовательность действий:

  1. Выражаем неизвестное из любого равенства через вторую переменную.
  2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
  3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

Метод сложения

Этапы решения:

  1. Приводим к равенству модули чисел при каком-либо неизвестном.
  2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
  3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

Графический метод

  1. Выражаем в каждом равенстве одну переменную через другую.
  2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
  3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
  4. Делаем проверку, подставив полученные значения в исходную систему равенств.

При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

Видео

Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

задачи с двумя переменными, задача с двумя неизвестнами, axmara.narod.ru о математике.

Мой племянник опять не может решить задачу!

Давайте вместе попробуем решить несколько задач  с двумя неизвестными!

Уясните  для себя самое главное! Не бойтесь математику! Полюбите её! И вы будете щелкать эти задачи как семечки! Ведь математика – это самая главная наука!

И неважно, что эта задача не похожа на вашу, если вы не научитесь решать их самостоятельно, то любое изменение условия задачи,  будет всегда для вас проблемой!

Условие задачи с двумя неизвестными :

Миша сказал, что одна лента в 2 раза длиннее, чем  вторая.

А Оля сказала, что одна лента длиннее другой на 3см.

Решение задачи с двумя неизвестными:

Правильное решение задачи с двумя переменными зависит от правильности составления уравнений!

Большую ленту выразим через – х.

Маленькую выразим через – у.

Слова Миши можно записать как   х = 2у.

Слова Оли можно записать как х – у = 3.

У нас получилось 2 уравнения с двумя неизвестными.

Заменим во втором уравнении  х на 2у, ведь х = 2у.

И получим 2у – у = 3, у = 3.

Подставим  у = 3, в первое уравнение  х = 2*х=6.

Ответ к задаче с двумя неизвестными:

Первая лента равна 6см, а вторая 3см.

Написать что-нибудь…

задачи с двумя переменными , решить задачу два велосипедиста . задачи с двумя неизвестными , задача два автомобиля выехали одновременно , задача два пешехода вышли одновременно , задача две трубы ,

примеры, объяснение. Задачи по алгебре :: SYL.ru

Рано или поздно любому школьнику на уроках алгебры встречаются задачи, решаемые с помощью уравнения. Поначалу появление букв вместо привычных цифр и действия с ними ставят в тупик даже самых одарённых, но если разобраться, всё далеко не так сложно, как кажется на первый взгляд.

Алгоритм решения

Перед тем как перейти к конкретным примерам, необходимо понять алгоритм решения задач с помощью уравнений. В любом уравнении есть неизвестное, чаще всего обозначаемое буквой Х. Также и в каждой задаче есть то, что необходимо найти, то же самое неизвестное. Именно его и нужно обозначать как Х. А потом, следуя условию задачи, прибавлять, отнимать, умножать и делить – совершать любые необходимые действия.

задачи решаемые с помощью уравнения

После нахождения неизвестного обязательно выполнение проверки, чтобы быть уверенными, что задача решена правильно. Стоит заметить, что дети уже в начальной школе начинают решение задач с помощью уравнений. Примеры этому — те задачи, которые нужно решать отрезками, являющимися полнейшими аналогами буквенных неизвестных.

Основа основ — задача про корзины

Итак, попробуем же на практике применить решение задач с помощью уравнений, объяснение алгоритма которых было дано чуть выше.

Дана задача: Собрали некоторое количество корзин с яблоками. Сначала 3 корзины продали, потом дособирали ещё 8 корзин. В итоге получилось 12 корзин. Сколько корзин яблок собрали первоначально?

задачи по алгебре

Начнём решение задачи с того, что обозначим неизвестное — то есть первоначальное количество корзин – буквой Х. Теперь начинаем составлять уравнение: Х (первоначальное количество) – 3 (проданные корзины) + 8 (те, которые собрали позже) = 12 (итоговое число корзин), то есть Х — 3 + 8 = 12. Решив простое уравнение, получим, что Х = 7. Обязательно выполняем проверку, то есть подставляем найденное число в равенство: 7 — 3 + 8 действительно равно 12, то есть задача решена верно.

Закрепление: концертные залы

Дана следующая задача: В двух концертных залах 450 мест. Известно, что в одном зале мест в 4 раза больше, чем в другом. Нужно узнать, сколько мест в каждом зале.

решение задач с помощью уравнения

Для того чтобы решать подобные задачи по алгебре, снова нужно применить уравнение. Мы знаем, что сумма двух чисел, одно из которых в 4 раза больше другого, равна 450. Пусть число мест в меньшем зале, неизвестное, будет равно Х, тогда число мест в большем зале – 4 * Х = 4Х. Следовательно, 450 = Х + 4Х = 5Х. А дальше нужно решить стандартное уравнение 450 = 5Х, где Х = 450 / 5 = 90, то есть в меньшем зале 90 мест, значит в большем – 90 * 4 = 360. Чтобы убедиться, что задача решена правильно, можно проверить неравенство: 360 + 90 = 450, то есть ответ верный.

Классика: полки с книгами

Но задачи, решаемые с помощью уравнения, могут быть и посложнее. Например, есть три полки с книгами. На первой полке книг на 8 больше, чем на второй, а на третьей — в 3 раза больше, чем на второй, причём количество книг на первой и третьей полках равное. Сколько книг на каждой полке?

Понятно, что отталкиваться здесь нужно от второй полки, которая встречается в обоих условиях. Если мы обозначаем количество книг на ней за Х, то тогда на первой полке Х + 8 книг, а на третьей — Х * 3 книг, при этом Х + 8 = 3Х. Решив уравнение, получаем Х = 4. Выполняем проверку, подставляя неизвестное в равенство: 4 + 8 действительно равно 3 * 4, то есть задача решена правильно.

Практикуемся дальше: бобры

Как видите, решение задач с помощью уравнения гораздо легче, чем кажется на первый взгляд. Закрепим навыки работы с уравнениями ещё одной задачей. Первый бобр сгрыз за день какое-то количество деревьев. Второй бобр сгрыз в 6 раз больше. Третий бобр сгрыз в 2 раза больше деревьев, чем первый, но в 3 раза меньше, чем второй. Сколько деревьев сгрыз каждый бобр?

решение задач с помощью уравнений примеры

Задача не такая запутанная, какой кажется на первый взгляд. Для начала найдём неизвестное – в этой задаче это количество деревьев, сгрызенных первым бобром. Следовательно, второй бобр уничтожил 6 * Х деревьев, а третий – 2 * Х, причём это число в 3 раза меньше 6 * Х. Составляем уравнение: 6Х = 3 * 2Х. Решив его, получаем, что первый бобр погрыз всего одно дерево, тогда второй – 6, а третий – 2. Подставив числа в уравнение, понимаем, что задача решена верно.

Соотносим уравнения и условия

Если вам скажут: «К каждой задаче подберите соответствующее уравнение», — не пугайтесь – это целиком и полностью реально.

Даны следующие уравнения:

  1. 6 + Х = 2Х;
  2. 6 = 2Х;
  3. 2 + Х = 6.

Условия задач следующие:

  1. У мальчика было 6 яблок, а у девочки в два раза меньше, сколько было яблок у девочки?
  2. На столе лежат ручки и карандаши, известно, что ручек на столе 6, а карандашей на 2 меньше, сколько ручек и сколько карандашей на столе?
  3. У Вани на шесть монет больше, чем у Тани, а у Тани в два раза меньше, чем у Ани, сколько монет у каждого ребёнка, если у Вани и Ани одинаковое количество монет?

Составим уравнения по каждой из задач.

  • В первом случае нам не известно число яблок у девочки, то есть оно равно Х, мы знаем, что Х в 2 раза меньше 6, то есть 6 = 2Х, следовательно, к этому условию подходит уравнение №2.
  • Во втором случае за Х обозначается количество карандашей, тогда количество ручек Х + 2, но при этом мы знаем, что ручек 6, то есть Х + 2 = 6, значит сюда подходит третье уравнение.
  • Что касается последней задачи, под номером 3, количество Таниных монет, которое встречается в двух условиях, является искомым неизвестным, тогда у Вани 6 + Х монет, а у Ани 2Х монет, то есть 6 + Х = 2Х – очевидно, что сюда подходит первое уравнение.
алгоритм решения задач с помощью уравнений

Если у вас есть задачи, решаемые с помощью уравнения, к которым необходимо подобрать соответствующее равенство, то составьте уравнение для каждой из задач, а потом уже соотносите то, что получилось у вас, с данными уравнениями.

Усложняем: система уравнений — конфеты

Следующий этап применения буквенных равенств в алгебре – это задачи, решаемые системой уравнений. В них имеется два неизвестных, причём одно из них выражается через другое на основании имеющихся данных. Известно, что у Паши и Кати вместе 20 конфет. Ещё известно, что если бы у Паши было на 2 конфеты больше, то у него было бы 15 конфет, сколько конфет у каждого?

В данном случае мы не знаем ни количество Катиных конфет, ни количество Сашиных конфет, следовательно, у нас два неизвестных, Х и Y соответственно. Вместе с тем, мы знаем, что Y + 2 = 15.

Составив систему, получаем два уравнения:

  1. Х + Y = 20;
  2. Y + 2 = 15.

А дальше действуем по правилам решения систем: выводим Y из второго уравнения, получая Y = 15 — 2, а потом подставляем его в первое, то есть Х + Y = Х + (15 — 2) = 20. Решив уравнение, получаем Х = 7, тогда Y = 20 — 7 = 13. Проверяем правильность решения, подставив Y во второе уравнение: 13 + 2 действительно равно 15, то есть у Кати 7 конфет, а у Паши — 13.

Ещё сложнее: квадратные уравнения и земельный участок

Встречаются также и задачи по алгебре, решаемые квадратным уравнением. В них нет ничего сложного, просто стандартная система преобразовывается в квадратное уравнение в ходе решения. Например, дан участок земли площадью в 6 гектаров (60000 квадратных метров), забор, огораживающий его, имеет длину 1000 метров. Каковы длина и ширина участка?

решение задач с помощью уравнений объяснение

Составляем уравнения. Длина забора является периметром участка, следовательно, если длину обозначить Х, а ширину Y, то 1000 = 2 * (Х + Y). Площадь же, то есть Х * Y = 60000. Из первого уравнения выводим Х = 500 — Y. Подставляя его во второе уравнение, получаем (500 — Y) * Y = 60000, то есть 500Y — Y2 = 60000. Решив уравнение, получаем стороны равные 200 и 300 метрам – квадратное уравнение имеет два корня, один из которых зачастую не подходит по условию, например, является отрицательным, тогда как ответ должен быть числом натуральным, поэтому проверку проводить обязательно.

Повторяем: деревья в саду

Закрепляя тему, решим ещё одну задачу. В саду есть несколько яблонь, 6 груш и несколько вишнёвых деревьев. Известно, что общее количество деревьев в 5 раз больше, чем количество яблонь, при этом вишневых деревьев в 2 раза больше, чем яблоневых. Сколько деревьев каждого вида в саду и сколько в саду всего деревьев?

к каждой задаче подберите соответствующее уравнение

За неизвестное Х, как, наверное, уже понятно, обозначаем яблоневые деревья, через которые мы сможем выразить остальные величины. Известно, что Y = 2X, а Y + Х + 6 = 5Х. Подставив Y из первого уравнения, получаем равенство 2Х + Х + 6 = 5Х, откуда Х = 3, следовательно в саду Y = 3 * 2 = 6 вишнёвых деревьев. Проводим проверку и отвечаем на второй вопрос, складывая получившиеся величины: 3 + 6 + 6 = 3 * 5, то есть задача решена верно.

Контрольная: сумма чисел

Решение задач с помощью уравнения далеко не такое сложное, как кажется на первый взгляд. Главное – не ошибиться в выборе неизвестного и, что ещё важнее, правильно его выразить, особенно если речь идёт о системе уравнений. В завершение даётся последняя задача, гораздо более запутанная, чем представленные выше.

Сумма трёх чисел – 40. Известно, что Х = 2Y + 3Z, а Y = Z — 2 / 3. Чему равны Х, Y и Z?

Итак, начнём с избавления от первого неизвестного. Вместо Х подставляем в равенство соответствующее выражение, получаем 2Y + 3Z + Z + Y = 3Y + 4Z = 40. Далее заменяем также известный Y, получая равенство 3Z — 2 + 4Z = 40, откуда Z = 6. Возвращаясь к Y, находим, что он равен 5.2, а Х, в свою очередь, равен 18. С помощью проверки убеждаемся в истинности выражения, следовательно задача решена правильно.

Заключение

Итак, что же такое задачи, решаемые с помощью уравнения? Так ли они страшны, как кажется на первый взгляд? Ни в коем случае! При должной усидчивости разобраться в них не составляет никакого труда. А однажды поняв алгоритм, в дальнейшем вы сможете щёлкать подобные задачки, даже самые запутанные, как семечки. Главное – внимательность, именно она поможет правильно определить неизвестное и путём решения порой множества уравнений найти ответ.

Решение задач на нахождение неизвестного по двум разностям

В мастерской сшили одинаковые плащи из двух кусков ткани (см. рис. 1). В одном куске было на 4 метра ткани больше, и из него сшили на 2 плаща больше. Сколько ткани расходовали на 1 плащ?

 

Рис. 1. Иллюстрация к задаче

Запишем условие задачи в таблицу 1:

— первая графа в таблице – это расход ткани на 1 плащ. Так как сшили одинаковые плащи, то расход ткани на каждый плащ будет одинаковым;

— вторая графа таблицы – это количество плащей. Нам неизвестно, сколько плащей сшили из каждого куска ткани, но известно, что из большего куска сшили на два плаща больше;

— третья графа – общий расход ткани. Нам неизвестно, сколько ткани было в каждом куске, но известно, что один кусок ткани на 4 метра больше другого.

Табл. 1. Условие задачи

Решение

Нам известны две разности: одна разность показывает, что плащей сшили на 2 больше, другая разность показывает, что один кусок ткани на 4 метра больше другого.

Почему из одного куска ткани сшили на 2 плаща больше? Потому что этот кусок ткани больше на 4 метра. Можно сделать вывод, что на 2 плаща расходовали 4 метра ткани. Для того чтобы найти, сколько ткани расходуют на 1 плащ, необходимо 4 разделить на 2:

 (м)

Ответ: на один плащ расходовали 2 м ткани.

В мастерской сшили одинаковые плащи из двух кусков ткани длиной 6 метров и 10 метров (см. рис. 2). Из большего куска сшили на 2 плаща больше. Сколько плащей сшили из каждого куска?

Рис. 2. Иллюстрация к задаче

Запишем условие задачи в таблицу 2:

— первая графа в таблице – это расход ткани на 1 плащ. Так как сшили одинаковые плащи, то расход ткани на каждый плащ будет одинаковым;

— вторая графа таблицы – это количество плащей. Нам неизвестно, сколько плащей сшили из каждого куска ткани, но известно, что из большего куска сшили на два плаща больше;

— третья графа – общий расход ткани. Нам известно, что один кусок ткани имеет длину 6 метров, а второй кусок – 10 метров.

Табл. 2. Условие задачи

Решение

1. Для того чтобы узнать, сколько плащей сшили из каждого куска ткани, необходимо знать, сколько ткани расходуют на 1 плащ.

Расход ткани на один плащ можно найти по двум разностям. Однако нам дана только одна разность – это разность количества плащей. Вторую разность (разность длин тканей) необходимо найти. Для этого из длины большего куска ткани нужно вычесть длину меньшего куска:

 (м)

2. Теперь нам известна и вторая разность, которая показывает, что один кусок ткани на 4 метра длиннее другого.

Если один кусок ткани на 4 метра длиннее другого и плащей из этого куска сшили на два больше, то можно сделать вывод, что на 2 плаща расходовали 4 метра ткани. Для того чтобы найти, сколько ткани расходуют на 1 плащ, необходимо 4 разделить на 2:

 (м)

3. Нам известен расход ткани на один плащ, – это 2 метра, и длина ткани в одном куске – это 6 метров, то можно найти, сколько из этого куска ткани сшили плащей:

 (п)

4. Другой кусок ткани имеет длину 10 метров, поэтому можно найти, сколько из этого куска ткани сшили плащей:

 (п)

Ответ: из одного куска ткани сшили 3 плаща, а из другого – 5 плащей.

 

Список литературы

1. Математика. Учебник для 4 кл. нач. шк. В 2 ч./М.И. Моро, М.А. Бантова. – М.: Просвещение, 2010.

2. Демидова Т.Е., Козлова С.А., Тонких А.П. Математика. 4 класс. Учебник в 3 ч. 2-е изд., испр. – М.: 2013.; Ч. 1 – 96 с., Ч. 2 – 96 с., Ч. 3 – 96 с.

3. Узорова О.В., Нефедова Е.А. Большой задачник по математике. 4 класс. – М.: 2013. – 256 с.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт ppt4web.ru (Источник)

2. Интернет-сайт «Инфоурок» (Источник)

3. Интернет-сайт «Мои лекции» (Источник)

 

Домашнее задание

1. Задачи 178, 180 (стр. 37) – Математика. Учебник для 4 кл. нач. шк. В 2 ч./М.И. Моро, М.А. Бантова (Источник)

2. Два автомобиля ехали с одинаковой скоростью. Один из них проехал 400 км, а другой – 480 км. Сколько часов был в пути каждый автомобиль, если первый был в пути на 2 часа меньше, чем второй?

3. Два шофера возили зерно. Один из них сделал 3 рейса, другой – 5 рейсов за день. Второй шофер перевез на 30 т зерна больше, чем первый. Сколько зерна перевез каждый из шоферов по отдельности, если каждый рейс перевозилось одинаковое количество зерна?

Линейное уравнение с двумя переменными и его график (более сложные случаи)

На данном уроке мы научимся решать более сложные задачи, в которых речь идет о линейных уравнениях с двумя неизвестными. Мы закрепим технику решения данных уравнений и построения графиков, вспомним теоретические основы и добавим к ним некоторые факты.

Напомним, что линейным уравнением с двумя переменными называется уравнение вида

Мы научились строить графики подобных уравнений и узнали, что они имеют бесчисленное множество решений – пар чисел х и у, которые на графике отображаются в виде точек.

В предыдущих задачах нам было задано уравнение, но как и все другие – линейное уравнение с двумя переменными это математическая модель некоторой реальной ситуации. Теперь рассмотрим такие задачи, в которых нужно для простейшей задачи составить уравнение – математическую модель, а затем его решить.

Пример 1:

Сумма двух чисел равна четырем. Построить математическую модель, то есть соответствующее линейное уравнение, и его график.

Пусть искомые числа это х и у, сумма их равна четырем:

 – линейное уравнение с двумя переменными. Построим график, для этого составим таблицу, для контроля возьмем три точки, а не две:

Решение задачи сведено в таблицу:

Словесная модель

Сумма двух чисел равна четырем

Алгебраическая модель

,

Геометрическая модель

 

Следующая группа задач связана с тем, что в одной задаче могут участвовать два линейных уравнения.

Пример 2:

Графически найти точку пересечения прямых  и

Обе прямые являются графиками соответствующих уравнений, построим их. Для этого составим таблицы. Для удобства представим уравнение в следующем виде:

Графически найдена точка пересечения А(1; 2)

Чтобы проверить, что точка А(1; 2) удовлетворяет обоим уравнениям, нужно подставить ее координаты в уравнения:

;

точка А удовлетворяет обоим уравнениям, значит, точка пересечения прямых найдена верно.

Следующий тип задач – это задачи с параметрами.

Пример 3:

Найдите значение коэффициента  в уравнении , если известно, что решением уравнения является пара чисел (3; 2)

Ранее у нас было задано или мы сами составляли линейное уравнение с известными коэффициентами, в данном случае один из коэффициентов неизвестен, но дано одно из решений уравнения, то есть пара значений х и у, удовлетворяющих уравнению. Чтобы найти параметр  подставим данные значения в уравнение:

итак, исходное уравнение имеет вид:

Итак, мы рассмотрели линейное уравнение с двумя неизвестными:

Отметим, что в случае, если , мы получаем частный случай данного уравнения – уравнение с одной переменной:

Аналогично если  мы получим линейное уравнение с одной переменной:

Вывод: в данном уроке мы рассмотрели более сложные задачи на линейные уравнения с двумя переменными, в частности текстовые задачи, уравнения с параметрами, задачи на два уравнения. Кроме того мы закрепили знание понятий и терминов.

 

Список рекомендованной литературы

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ 

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

 

Рекомендованные ссылки на ресурсы интернет

1. Интернет-портал Nado5.ru (Источник).

2. Портал для семейного просмотра (Источник).

3. Интернет-портал Nado5.ru (Источник).

 

Рекомендованное домашнее задание

Задание 1: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 980, ст.212;

Задание 2: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 981, ст.212;

Задание 3: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 986, ст.212;

Решение задач с помощью составления систем уравнений

Решая задачи при помощи уравнений, мы искали, как правило, одно неизвестное. Но встречаются и задачи, где есть несколько неизвестных. Такие задачи принято решать посредством составления систем уравнений.

Задачи с помощью систем уравнений 1Задача 1.

Навстречу друг другу из одного города в другой, расстояние между которыми составляет 30 км, едут два велосипедиста. Предположим, что если велосипедист 1 выедет на 2 ч раньше своего товарища, то они встретятся через 2,5 часа после отъезда велосипедиста 2; если же велосипедист 2 выедет 2мя часами ранее велосипедсита 1, то встреча произойдет через 3 часа после отъезда первого. С какой скоростью движется каждый велосипедист?

Решение.

1. Определим скорость велосипедиста 1 как х км/ч, а скорость велосипедиста 2 как у км/ч.

2. Если первый велосипедист выедет на 2 ч раньше второго, то, согласно условию, он будет ехать до встречи 4,5 ч, тогда как второй 2,5 часа. За 4,5 ч первый проедет путь 4,5х км, а за 2,5 ч второй проедет путь 2,5у км.

3. Встреча двух велосипедистов означает, что суммарно они проехали путь 30 км, т.е. 4,5х + 2,5 у = 30. Это и есть наше первое уравнение.

4. Если второй выедет на 2 ч раньше первого, то, согласно условию, он будет ехать до встречи 5 ч, тогда как первый – 3 ч. Используя рассуждения, аналогичные изложенным выше рассуждениям, приходим к уравнению:

3х + 5у = 30.

5. Итак, мы получили систему уравнений

{4,5х + 2,5 у = 30,
{3х + 5у = 30.

6. Решив полученную систему уравнений, мы найдем корни: х = 5, у = 3.

Т.о., первый велосипедист едет со скоростью 5 км/ч, а второй – 3 км/ч.

Ответ: 5 км/ч, 3 км/ч.

Задача 2.

Вкладчику на его сбережения через год было начислено 6 $ процентных денег. Добавив 44 $, вкладчик оставил деньги еще на год. По истечении года вновь было произведено начисление процентов, и теперь вклад вместе с процентами составил 257,5 $. Какая сумма составляла вклад первоначально и сколько процентов начисляет банк?

Решение.

1. Пусть х ($) – первоначальный вклад, а у (%) – это проценты, которые начисляются ежегодно.

2. Тогда к концу года к первоначальному вкладу добавится (у/100) ∙ х $.
Из условия получаем уравнение (ух/100) = 6.

3. По условию известно, что в конце года вкладчик внес еще 44 $, так что вклад в начале второго года составил х + 6 + 44, т.е. (х + 50) $. Таким образом, сумма, полученная к концу второго года с учетом начисления, равнялась (х + 50 + (у/100)(х + 50)) $. По условию эта сумма равна 275,5 $. Это позволило нам составить второе уравнение:

х + 50 + (у/100)(х + 50) = 257,5

4. Итак, мы получили систему уравнений:

{(ух/100) = 6,
{х + 50 + (у/100)(х + 50) = 257,5

После преобразования системы уравнений мы получим:

{ху = 600,
{100х + 50у + ху = 20750.Задачи с помощью систем уравнений 2

Решив систему уравнений, мы нашли два корня: 200 и 1,5. Только первое значение удовлетворяет нашему условию.

Подставим значение х в уравнение и найдем значение у:
если х = 200, то у = 3.

Таким образом, первоначальный вклад составлял 200 $, а банк в год производит начисление а размере 3 %.

Ответ: 200 $; 3 %.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Алгебра

Системы нелинейных уравнений нелинейные уравнения с двумя неизвестными однородные уравнения второй степени примеры решения задач

Нелинейные уравнения с двумя неизвестными

      Определение 1. Пусть   A   – некоторое множество пар чисел   (y) .   Говорят, что на множестве   A   задана числовая функция   z   от двух переменных   x   и   y ,   если указано правило, с помощью которого каждой паре чисел из множества   A   ставится в соответствие некоторое число.

      Задание числовой функции   z   от двух переменных   x   и   y   часто обозначают так:

причем в записи (1) числа   x   и   y   называют аргументами функции, а число   z   – значением функции, соответствующим паре аргументов   (y) .

      Определение 2. Нелинейным уравнением с двумя неизвестными   x   и   y   называют уравнение вида

где   f (x , y)   – любая функция, отличная от функции

f (x , y) = ax +by + c ,

где   a ,  b ,  c   – заданные числа.

      Определение 3. Решением уравнения (2) называют пару чисел   (y) ,   для которых формула (2) является верным равенством.

      Пример 1. Решить уравнение

x2 – 4xy + 6y2
– 12 y +18 = 0 .
(3)

      Решение. Преобразуем левую часть уравнения (3):

x2 – 4xy + 6y2 – 12 y +18 =
= (x2 – 4xy + 4y2) +
+ (2y2– 12y +18) =
= (x – 2y)2 + 2(y – 3)2 .

      Таким образом, уравнение (3) можно переписать в виде

(x – 2y)2 + 2(y – 3)2 = 0 .(4)

      Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные   x   и   y   удовлетворяют системе уравнений

нелинейные уравнения с двумя неизвестными примеры решения задач

решением которой служит пара чисел   (6 ; 3) .

      Ответ:   (6 ; 3)

      Пример 2. Решить уравнение

      Решение. Из неравенства

нелинейные уравнения с двумя неизвестными примеры решения задач

вытекает, что уравнение (5) решений не имеет.

      Ответ: Решений нет.

      Пример 3. Решить уравнение

      Решение. В соответствии с определением логарифма из формулы (6) получаем

нелинейные уравнения с двумя неизвестными примеры решения задач

      Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y) ,

где   y   – любое число.

Системы из двух уравнений, одно из которых линейное

      Определение 4. Решением системы уравнений

Системы нелинейных уравнений

называют пару чисел   (y) ,   при подстановке которых в каждое из уравнений этой системы получается верное равенство.

      Системы из двух уравнений, одно из которых линейное, имеют вид

Системы нелинейных уравнений

где   a ,  b ,  c   – заданные числа, а   g(x , y)   – функция двух переменных   x   и   y .  

      Пример 4. Решить систему уравнений

Системы нелинейных уравнений примеры решения задач(7)

      Решение. Выразим из первого уравнения системы (7) неизвестное   y   через неизвестное   x   и подставим полученное выражение во второе уравнение системы:

Системы нелинейных уравнений примеры решения задачСистемы нелинейных уравнений примеры решения задачСистемы нелинейных уравнений примеры решения задач

      Решая уравнение

x2 – 8x – 9 = 0 ,

находим корни

x1 = – 1 ,   x2 = 9 .

      Следовательно,

y1 = 8 – x1 = 9 ,  
y2 = 8 – x2 = – 1 .

      Таким образом, решениями системы (7) являются две пары чисел

Системы нелинейных уравнений примеры решения задач и     Системы нелинейных уравнений примеры решения задач

Ответ:   (– 1 ; 9) ,   (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

      Определение 5. Однородным уравнением второй степени с двумя неизвестными   x   и   y   называют уравнение вида

ax2 + bxy + cy2 = 0 .

где   a ,  b ,  c   – заданные числа.

      Пример 5. Решить уравнение

3x2 – 8xy + 5y2 = 0 .(8)

      Решение. Для каждого значения   y   рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного   x .   Тогда дискриминант   D   квадратного уравнения (8) будет выражаться по формуле

D = (8y)2 – 60y2 = 4y2 ,

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Системы нелинейных уравнений примеры решения задачСистемы нелинейных уравнений примеры решения задач

      Ответ. Решениями уравнения (8) являются все пары чисел вида

( y ; y)   или     Системы нелинейных уравнений примеры решения задач

где   y   – любое число.

      Следствие. Левую часть уравнения (8) можно разложить на множители

Системы нелинейных уравнений примеры решения задачСистемы нелинейных уравнений примеры решения задач

Системы из двух уравнений, одно из которых однородное

      Системы из двух уравнений, одно из которых однородное, имеют вид

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач

где   a ,  b ,  c   – заданные числа, а   g(x , y)   – функция двух переменных   x   и   y .

      Пример 6. Решить систему уравнений

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач(9)

      Решение. Решим однородное уравнение

3x2 + 2xyy2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного   x :

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач.

      В случае, когда   x = – y ,   из второго уравнения системы (9) получаем уравнение

4y2 = 16 ,

корнями которого служат числа   y1 = 2 ,   y2 = – 2 .  Находя для каждого из этих значений   y   соответствующее ему значение   x ,   получаем два решения системы:   (– 2 ; 2) ,   (2 ; – 2) .

      В случае, когда

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач,

из второго уравнения системы (9) получаем уравнение

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач

которое корней не имеет.

Ответ:   (– 2 ; 2) ,   (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

      Пример 7. Решить систему уравнений

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач(10)

      Решение. Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на   5 ,   прибавим второе уравнение, умноженное на   3 ,   и запишем полученный результат вместо первого уравнения системы (10).

      В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач(11)

     Решим однородное уравнение

3x2 + 17xy + 10y2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного   x :

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач.

      В случае, когда   x = – 5y ,   из второго уравнения системы (11) получаем уравнение

5y2 = – 20 ,

которое корней не имеет.

      В случае, когда

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач,

из второго уравнения системы (11) получаем уравнение

Системы нелинейных уравнений однородные уравнения второй степени примеры решения задач,

корнями которого служат числа   y1 = 3 ,   y2 = – 3 .  Находя для каждого из этих значений   y   соответствующее ему значение   x ,   получаем два решения системы:   (– 2 ; 3) ,   (2 ; – 3) .

Ответ:   (– 2 ; 3) ,   (2 ; – 3)

Примеры решения систем уравнений других видов

      Пример 8. Решить систему уравнений (МФТИ)

Системы нелинейных уравнений примеры решения задачСистемы нелинейных уравнений примеры решения задач(12)

      Решение. Введем новые неизвестные   u   и   v ,   которые выражаются через   x   и   y   по формулам:

Системы нелинейных уравнений примеры решения задач(13)

      Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные   x   и   y   через   u   и   v .   Из системы (13) следует, что

Системы нелинейных уравнений примеры решения задач(14)

      Решим линейную систему (14), исключив из второго уравнения этой системы переменную   x .   С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

      В результате система (14) преобразуется в равносильную ей систему

Системы нелинейных уравнений примеры решения задач

из которой находим

Системы нелинейных уравнений примеры решения задач(15)

      Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

Системы нелинейных уравнений примеры решения задач(16)

      У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное   u   через неизвестное   v   и подставить это выражение во второе уравнение системы:

Системы нелинейных уравнений примеры решения задачСистемы нелинейных уравнений примеры решения задачСистемы нелинейных уравнений примеры решения задач

      Решая уравнение

2v2 + 3v – 14 = 0 ,

находим корни

Системы нелинейных уравнений примеры решения задач

      Следовательно, решениями системы (16) являются две пары чисел

Системы нелинейных уравнений примеры решения задач

      Из формул (13) вытекает, что   Системы нелинейных уравнений примеры решения задач,  поэтому первое решение должно быть отброшено. В случае   u2 = 5,   v2 = 2   из формул (15) находим значения   x   и   y :

x = 13,   y = – 3 .

      Ответ:   (13 ; – 3)

      Определение 6. Решением системы из двух уравнений с тремя неизвестными называют тройку чисел   (y ; z) ,   при подстановке которых в каждое уравнение системы получается верное равенство.

      Пример 9. Решить систему из двух уравнений с тремя неизвестными

Системы нелинейных уравнений примеры решения задач(17)

      Решение. У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное   z   через неизвестные   x   и   y   и подставить это выражение во второе уравнение системы:

Системы нелинейных уравнений примеры решения задач(18)

      Перепишем второе уравнение системы (18) в другом виде:

Системы нелинейных уравнений примеры решения задачСистемы нелинейных уравнений примеры решения задачСистемы нелинейных уравнений примеры решения задач

      Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае   x = 4,   y = 4 .

      Следовательно,

Системы нелинейных уравнений примеры решения задач

      Ответ:   (4 ; 4 ; – 4)

      Замечание. Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.