Дифференциал википедия – Дифференциал (механика) — Википедия

Содержание

Дифференциал (механика) — Википедия

Устройство дифференциала (центральная часть) Задний ведущий мост, в нём стоит дифференциал.

Дифференциа́л (от лат. differentia – разность, различие) — механизм в составе трансмиссий транспортных и (реже) технологических машин по передаче мощности посредством вращения с одновременным делением единого потока мощности на два дифференциально связанных или суммированием двух независимых потоков мощности в один. Особенность дифференциала и смысл его термина в том, что деление/суммирование потоков мощности этот механизм производит именно дифференциально: каждый из двух исходящих/входящих потоков может в любое время получать/давать от 0 до 100% мощности относительно единого на входе/выходе (с поправкой на КПД дифференциала), а соотношение этих мощностей между собой может быть любое в пределах этих 100%.

В каноническом чисто механическом виде представляет собой планетарную передачу, состоящую из одного простого трёхзвенного плоского или пространственного планетарного механизма без каких-либо управляющих элементов (тормозов или фрикционов). Фактические дифференциалы, исходя из своих задач в трансмиссии, могут быть дополнены планетарными рядами и управляющими элементами. Однако в последнее время получили распространение чисто фрикционные устройства, выполяющие функции дифференциала — вискомуфты.

В отличие от мощности и угловой скорости вращения крутящий момент дифференциалом делится жёстко и неизменно. Отсюда такие термины как симметричный дифференциал (момент делится в соотношении 50/50) или несимметричный (момент делится в любых неравных соотношениях). При суммировании крутящие моменты на дифференциале также складываются в один по определённым принципам.

С точки зрения механики, любой дифференциал имеет две и только две степени свободы. Механизм, выполняющий функции дифференциала и имеющий три степени свободы, правильнее называть двойным дифференциалом (четыре — тройным, и так далее).

Назначение

Необходимость применения дифференциала в конструкции привода автомобилей обусловлена тем, что внешнее колесо при повороте проходит более длинную дугу, чем внутреннее. То есть при вращении ведущих колёс с одинаковой скоростью поворот возможен только с пробуксовкой, а это негативно сказывается на управляемости и сильно повышает износ шин.

Назначение дифференциала в автомобилях:

  • позволяет ведущим колёсам вращаться с разными угловыми скоростями;
  • неразрывно передаёт крутящий момент от двигателя на ведущие колёса;

В случае единственного приводного колеса или отдельного двигателя для каждого из ведущих колёс дифференциал не требуется. В конструкции раллийных автомобилей иногда дифференциал намертво блокируют (заваривают), жёстко связывая колёса ведущей оси — это допустимо, так как на гравии или снегу в ралли повороты проходятся только с заносом. Также дифференциал отсутствует в конструкции картов, при этом гибкость их рам обычно позволяет вывешивать ведущее заднее колесо с внутренней стороны поворота без отрыва передних колёс от трассы. В веломобилях с ведущей осью вместо дифференциала часто применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом весь момент передаётся только на то колесо, которое медленнее вращается.

Устройство

Основой любого дифференциала может быть только планетарная передача, которая в силу механики своей работы единственная из всех передач вращательного движения может решать задачи, стоящие перед дифференциалом в трансмиссии. Термин «планетарный дифференциал» является избыточным — любой дифференциал планетарный. Работоспособность как дифференциала абсолютно не зависит ни от её состава или формы, ни от выбора конкретных звеньев под ведущие или ведомые. Любая в самом простом своём варианте — трёхзвенного планетарного механизма без каких-либо управляющих элементов — может выполнять функции по разложению одного потока на два взаимосвязанных или сложению двух независимых потоков в один. Выбор иных звеньев в качестве ведущих, а других в качестве ведомых определяется лишь требуемой кинематикой связей дифференциала с другими элементами трансмиссии и особенностями механики работы дифференциала в выбранном формате распределения функций между звеньями. Дополнение управляющими элементами и применение так называемых сложных планетарных механизмов наделяет дифференциал возможностями по взаимовыравниванию угловых скоростей потоков и возможностями по активному управлению этими скоростями.

Дифференциал автомобиля Porsche Cayenne в разрезе

Каноническим, наиболее известным видом дифференциала является межколёсный дифференциал автомобиля, выполненный на основе простого (то есть, трёхзвенного) пространственного планетарного механизма схемы на четырёх конических шестернях. Водилом планетарной передачи такого дифференциала фактически служит весь его корпус — это ведущее звено ➁. Две шестерни являются сателлитами на общей оси ➂. И две шестерни являются двумя солнцами — двумя ведомыми звеньями ➃. Подача мощности осуществляется на корпус (водило) через жёстко закреплённую ведомую шестерню главной передачи, которая в свою очередь в паре с ведущей шестернёй ➀ формально есть другой элемент трансмиссии, несмотря на то, что дифференциал с ведомой шестернёй зачастую выглядит как единый сборочный узел. Снятие мощности осуществляется с двух солнц, к которым в данном случае пристыкованы валы с шарнирами типа ШРУС.

Расположение

На автомобилях с одной ведущей осью дифференциал располагается на ведущей оси.

На автомобилях со сдвоенной ведущей осью два дифференциала, по одному на каждой оси.

На автомобилях с подключаемым полным приводом по одному дифференциалу на каждой оси. На таких машинах не рекомендуется ездить по дорогам с плотным покрытием с включенным полным приводом.

На автомобилях с постоянным полным приводом есть три дифференциала: по одному на каждой оси (межколёсный), плюс один распределяет крутящий момент между осями (межосевой).

При трёх или четырёх ведущих мостах (колёсная формула 6 × 6 или 8 × 8) добавляется ещё межтележечный дифференциал.

Проблема буксующего колеса

Обычный («свободный») дифференциал отлично работает, пока ведущие колёса неразрывно связаны с дорогой. Но, когда одно из колёс теряет сцепление (оказывается в воздухе или на льду), то вращается именно это колесо, в то время как другое, стоящее на твёрдой земле, неподвижно. В случае потери сцепления одним из колёс, его сопротивление вращению падает, а раскрутка происходит без существенного увеличения момента сопротивления (трение скольжения в пятне контакта меньше трения покоя и несущественно зависит от скорости пробуксовки). В момент когда колесо начинает проскальзывать, крутящие моменты на колесах не равны друг другу, а обратно пропорциональны сопротивлению вращения колес.

При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей. Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней, наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется, — ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

История способов решения проблемы буксующего колеса

  • 1825 — Онесифор Пеккёр (Onesiphore Pecqueur, 1792—1852) изобрёл дифференциал.
  • 1932 — Фердинанд Порше начал исследования в области дифференциалов c проскальзыванием.
  • 1935 — компания «ZF Friedrichshafen AG», сотрудничающая с «Порше», выпустила на рынок кулачковый дифференциал, примененный впоследствии на ранних моделях Фольксваген (Type B-70)[1]
  • 1956 — американская компания Packard одной из первых начала выпуск моделей с -дифференциалом под фирменным названием «Twin Traction». В 60-х годах многие компании начали производство LSD-дифференциалов под различными фирменными названиями:
  • Alfa Romeo: Q2
  • American Motors: Twin-Grip
  • Buick: Positive Traction
  • Cadillac : Controlled
  • Chevrolet/GMC: Positraction
  • Chrysler: Sure Grip
  • Dana Corporation:Trak-Lok or Powr-Lok
  • Ferrari: E-Diff
  • Fiat: Viscodrive
  • Ford: Equa-Lock and Traction-Lok
  • International: Trak-Lok или Power-Lok
  • Jeep: Trac-Lok (clutch-type mechanical), Tru-Lok (gear-type mechanical), and Vari-Lok (gerotor pump), Power Lok
  • Oldsmobile: Anti-Spin
  • Pontiac: Safe-T-Track
  • Porsche: PSD (electro-hydraulic mechanical)
  • Saab: Saab XWD eLSD
  • Studebaker-Packard Corporation: Twin Traction

Самоблокирующийся дифференциал

Термин обозначает любой дифференциал, механика работы которого позволяет ему самостоятельно блокироваться — то есть, в первую очередь, выравнивать угловые скорости ведомых шестерён и превращаться в прямую передачу. Самоблокирующиеся дифференциалы не требуют никаких внешних систем управления и работают автономно. В автомобилях могут использоваться и как межколёсные и как межосевые. В гусеничной технике не используются. Условно все «самоблоки» можно разделить на две группы: срабатывающие от крутящего момента и срабатывающие от разницы угловых скоростей на ведомых шестернях. В первую группу попадают дифференциалы Quaife и Torsen, дифференциалы с дисковой и конусной блокировкой, кулачковые. Во вторую — механизмы, состоящие из обычного дифференциала и автоматического блокирующего устройства: дифференциалы с вискомуфтой, с центробежным автоматом включения (Eaton G80), дифференциалы с фрикционной блокировкой и дифференциальным насосом, дифференциалы с гидросопротивлением.

Принудительно блокируемые дифференциалы

Ручная блокировка дифференциала

Дифференциал с принудительной блокировкой

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал стоит блокировать перед преодолением сложных участков пути (вязкий грунт, препятствия), и затем разблокировать после выезда на обычную дорогу. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях чаще всего не рекомендуется блокировать дифференциал, когда автомобиль движется, желательно включать блокировку на стоянке. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. Обычно производители автомобиля отдельно указывают рекомендованную максимальную скорость движения при заблокированном дифференциале, в случае её превышения возможны поломки трансмиссии. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 г. в команде «Макларен»: в повороте внутреннее колесо подтормаживалось рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с того же (2002) года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений гонщика. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

DPS

Основная статья: DPS

Dual Pump System — система с двумя насосами, автоматически подключающая вторую ось, когда не хватает одной. Применяется в системах полного привода Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Активный дифференциал

Термин означает любой дифференциал, устройство которого позволяет перераспределять мощность/тягу на ведомых звеньях в любой требуемой для данного момента движения пропорции. Именно в этом и есть отличие активного дифференциала от блокируемого, в котором мощность/тяга на ведомых звеньях может быть лишь выравнена до пропорции 50/50. Все активные дифференциалы имеют двухканальную систему управления и обязательно два управляющих элемента — два тормоза или два фрикциона — включающихся в работу по команде от внешних источников. Все активные дифференциалы помимо основной планетарной передачи, выполняющей функции свободной раздачи мощности, имеют парный комплект дополнительных планетарных или простых зубчатых передач, выполняющих функцию перераспределения мощности в свою сторону. Каждая из этих парных передач связана со своим управляющим элементом. Хотя какие-либо механизмы блокировки у активных дифференциалов отсутствуют, фактически, все активные дифференциалы также являются блокируемыми, только в них не один симметричный режим блокировки, а два несимметричных (по одному для каждой из двух сторон). В этих режимах управляющий элемент дифференциала работает без внутренней пробуксовки, а сам дифференциал превращается в понижающе-повышающую передачу. На легковых автомобилях с активными дифференциалами эти крайние режимы могут и не использоваться, зато они используются в дифференциальных механизмах поворота гусеничных машин.

Случаи отсутствия дифференциалов в трансмиссии

Наличие дифференциалов, делящих мощность, в трансмиссии транспортной машины не обязательно. Их отсутствие несомненно приводит к повышению нагрузок на трансмиссию и повышенному износу колёс, но с этим либо мирятся, либо в аспекте предполагаемой эксплуатации конкретной машины это не важно. Четырёхколёсный автомобиль с двумя ведущими колёсами в принципе может обходится без дифференциала — например, карт, или гоночный автомобиль с задней ведущей осью для гонок на покрытиях с низким коэффициентом сцепления. В экстра случаях дифференциал может отсутствовать даже и на гоночной машине для асфальта (пример — победитель гонки 24 часа Ле-Мана 1991 года Mazda 787B). На чисто переднеприводной машине межколёсный дифференциал должен быть обязательно, так как его отсутствие не позволит адекватно поворачивать независимо от типа дорожного покрытия. В полноприводных машинах могут отсутствовать межосевые дифференциалы, при этом опять же, либо это неважно в аспекте экплуатации машины (пример — гоночные машины WRC 2012-2016 годов), либо движение на такой машине допускается только на покрытиях с низким коэффициентом сцепления (пример — внедорожники с подключаемой передней осью типа УАЗ-469 или Jeep Wrangler). Дифференциалы отсутствуют на тяговых машинах ж/д транспорта — на электровозах, тепловозах, электропоездах, вагонах метро. Колёса одной оси этих машин за счёт конической поверхности круга катания и увеличения ширины колеи на дуге могут сдвигаться чуть в сторону от центра пути и тем самым обеспечивают разный диаметр в точках контакта колеса с рельсом. Плюс к этому, колёса могут проскальзывают при движении по дуге, издавая при этом специфический звук, что отчасти нивелируется наклоном рельсового полотна в кривых. Отдельные механизмы поворота гусеничных машин также могут обходиться без дифференциалов в своей конструкции — здесь движение машины по дуге определяется либо пробуксовкой фрикционных муфт, либо вообще машина имеет лишь несколько фиксированных радиусов поворота. Дифференциалов нет в веломобилях, где вместо них ради удешевления и простоты применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом тяга передаётся только на то колесо, которое медленнее вращается. Дифференциалов может не быть в мотоблоках и средствах малой механизации, где их отсутствие нивелируется предельно узкой колеёй колёс ведущей оси, легкодеформируемыми покрышками и низким коэффициентом сцепления между колёсами и землёй.

См. также

Примечания

  1. ↑ The Motor Vehicle K.Newton W.Steeds T.K.Garrett Ninth Edition pp549-550

Ссылки

wikipedia.green

Дифференциал (механика) — Википедия. Что такое Дифференциал (механика)

Устройство дифференциала (центральная часть) Задний ведущий мост, в нём стоит дифференциал.

Дифференциа́л (от лат. differentia – разность, различие) — механизм в составе трансмиссий транспортных и (реже) технологических машин по передаче мощности посредством вращения с одновременным делением единого потока мощности на два дифференциально связанных или суммированием двух независимых потоков мощности в один. Особенность дифференциала и смысл его термина в том, что деление/суммирование потоков мощности этот механизм производит именно дифференциально: каждый из двух исходящих/входящих потоков может в любое время получать/давать от 0 до 100% мощности относительно единого на входе/выходе (с поправкой на КПД дифференциала), а соотношение этих мощностей между собой может быть любое в пределах этих 100%.

В каноническом чисто механическом виде представляет собой планетарную передачу, состоящую из одного простого трёхзвенного плоского или пространственного планетарного механизма без каких-либо управляющих элементов (тормозов или фрикционов). Фактические дифференциалы, исходя из своих задач в трансмиссии, могут быть дополнены планетарными рядами и управляющими элементами. Однако в последнее время получили распространение чисто фрикционные устройства, выполяющие функции дифференциала — вискомуфты.

В отличие от мощности и угловой скорости вращения крутящий момент дифференциалом делится жёстко и неизменно. Отсюда такие термины как симметричный дифференциал (момент делится в соотношении 50/50) или несимметричный (момент делится в любых неравных соотношениях). При суммировании крутящие моменты на дифференциале также складываются в один по определённым принципам.

С точки зрения механики, любой дифференциал имеет две и только две степени свободы. Механизм, выполняющий функции дифференциала и имеющий три степени свободы, правильнее называть двойным дифференциалом (четыре — тройным, и так далее).

Назначение

Необходимость применения дифференциала в конструкции привода автомобилей обусловлена тем, что внешнее колесо при повороте проходит более длинную дугу, чем внутреннее. То есть при вращении ведущих колёс с одинаковой скоростью поворот возможен только с пробуксовкой, а это негативно сказывается на управляемости и сильно повышает износ шин.

Назначение дифференциала в автомобилях:

  • позволяет ведущим колёсам вращаться с разными угловыми скоростями;
  • неразрывно передаёт крутящий момент от двигателя на ведущие колёса;

В случае единственного приводного колеса или отдельного двигателя для каждого из ведущих колёс дифференциал не требуется. В конструкции раллийных автомобилей иногда дифференциал намертво блокируют (заваривают), жёстко связывая колёса ведущей оси — это допустимо, так как на гравии или снегу в ралли повороты проходятся только с заносом. Также дифференциал отсутствует в конструкции картов, при этом гибкость их рам обычно позволяет вывешивать ведущее заднее колесо с внутренней стороны поворота без отрыва передних колёс от трассы. В веломобилях с ведущей осью вместо дифференциала часто применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом весь момент передаётся только на то колесо, которое медленнее вращается.

Устройство

Основой любого дифференциала может быть только планетарная передача, которая в силу механики своей работы единственная из всех передач вращательного движения может решать задачи, стоящие перед дифференциалом в трансмиссии. Термин «планетарный дифференциал» является избыточным — любой дифференциал планетарный. Работоспособность как дифференциала абсолютно не зависит ни от её состава или формы, ни от выбора конкретных звеньев под ведущие или ведомые. Любая в самом простом своём варианте — трёхзвенного планетарного механизма без каких-либо управляющих элементов — может выполнять функции по разложению одного потока на два взаимосвязанных или сложению двух независимых потоков в один. Выбор иных звеньев в качестве ведущих, а других в качестве ведомых определяется лишь требуемой кинематикой связей дифференциала с другими элементами трансмиссии и особенностями механики работы дифференциала в выбранном формате распределения функций между звеньями. Дополнение управляющими элементами и применение так называемых сложных планетарных механизмов наделяет дифференциал возможностями по взаимовыравниванию угловых скоростей потоков и возможностями по активному управлению этими скоростями.

Дифференциал автомобиля Porsche Cayenne в разрезе

Каноническим, наиболее известным видом дифференциала является межколёсный дифференциал автомобиля, выполненный на основе простого (то есть, трёхзвенного) пространственного планетарного механизма схемы на четырёх конических шестернях. Водилом планетарной передачи такого дифференциала фактически служит весь его корпус — это ведущее звено ➁. Две шестерни являются сателлитами на общей оси ➂. И две шестерни являются двумя солнцами — двумя ведомыми звеньями ➃. Подача мощности осуществляется на корпус (водило) через жёстко закреплённую ведомую шестерню главной передачи, которая в свою очередь в паре с ведущей шестернёй ➀ формально есть другой элемент трансмиссии, несмотря на то, что дифференциал с ведомой шестернёй зачастую выглядит как единый сборочный узел. Снятие мощности осуществляется с двух солнц, к которым в данном случае пристыкованы валы с шарнирами типа ШРУС.

Расположение

На автомобилях с одной ведущей осью дифференциал располагается на ведущей оси.

На автомобилях со сдвоенной ведущей осью два дифференциала, по одному на каждой оси.

На автомобилях с подключаемым полным приводом по одному дифференциалу на каждой оси. На таких машинах не рекомендуется ездить по дорогам с плотным покрытием с включенным полным приводом.

На автомобилях с постоянным полным приводом есть три дифференциала: по одному на каждой оси (межколёсный), плюс один распределяет крутящий момент между осями (межосевой).

При трёх или четырёх ведущих мостах (колёсная формула 6 × 6 или 8 × 8) добавляется ещё межтележечный дифференциал.

Проблема буксующего колеса

Обычный («свободный») дифференциал отлично работает, пока ведущие колёса неразрывно связаны с дорогой. Но, когда одно из колёс теряет сцепление (оказывается в воздухе или на льду), то вращается именно это колесо, в то время как другое, стоящее на твёрдой земле, неподвижно. В случае потери сцепления одним из колёс, его сопротивление вращению падает, а раскрутка происходит без существенного увеличения момента сопротивления (трение скольжения в пятне контакта меньше трения покоя и несущественно зависит от скорости пробуксовки). В момент когда колесо начинает проскальзывать, крутящие моменты на колесах не равны друг другу, а обратно пропорциональны сопротивлению вращения колес.

При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей. Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней, наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется, — ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

История способов решения проблемы буксующего колеса

  • 1825 — Онесифор Пеккёр (Onesiphore Pecqueur, 1792—1852) изобрёл дифференциал.
  • 1932 — Фердинанд Порше начал исследования в области дифференциалов c проскальзыванием.
  • 1935 — компания «ZF Friedrichshafen AG», сотрудничающая с «Порше», выпустила на рынок кулачковый дифференциал, примененный впоследствии на ранних моделях Фольксваген (Type B-70)[1]
  • 1956 — американская компания Packard одной из первых начала выпуск моделей с -дифференциалом под фирменным названием «Twin Traction». В 60-х годах многие компании начали производство LSD-дифференциалов под различными фирменными названиями:
  • Alfa Romeo: Q2
  • American Motors: Twin-Grip
  • Buick: Positive Traction
  • Cadillac : Controlled
  • Chevrolet/GMC: Positraction
  • Chrysler: Sure Grip
  • Dana Corporation:Trak-Lok or Powr-Lok
  • Ferrari: E-Diff
  • Fiat: Viscodrive
  • Ford: Equa-Lock and Traction-Lok
  • International: Trak-Lok или Power-Lok
  • Jeep: Trac-Lok (clutch-type mechanical), Tru-Lok (gear-type mechanical), and Vari-Lok (gerotor pump), Power Lok
  • Oldsmobile: Anti-Spin
  • Pontiac: Safe-T-Track
  • Porsche: PSD (electro-hydraulic mechanical)
  • Saab: Saab XWD eLSD
  • Studebaker-Packard Corporation: Twin Traction

Самоблокирующийся дифференциал

Термин обозначает любой дифференциал, механика работы которого позволяет ему самостоятельно блокироваться — то есть, в первую очередь, выравнивать угловые скорости ведомых шестерён и превращаться в прямую передачу. Самоблокирующиеся дифференциалы не требуют никаких внешних систем управления и работают автономно. В автомобилях могут использоваться и как межколёсные и как межосевые. В гусеничной технике не используются. Условно все «самоблоки» можно разделить на две группы: срабатывающие от крутящего момента и срабатывающие от разницы угловых скоростей на ведомых шестернях. В первую группу попадают дифференциалы Quaife и Torsen, дифференциалы с дисковой и конусной блокировкой, кулачковые. Во вторую — механизмы, состоящие из обычного дифференциала и автоматического блокирующего устройства: дифференциалы с вискомуфтой, с центробежным автоматом включения (Eaton G80), дифференциалы с фрикционной блокировкой и дифференциальным насосом, дифференциалы с гидросопротивлением.

Принудительно блокируемые дифференциалы

Ручная блокировка дифференциала

Дифференциал с принудительной блокировкой

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал стоит блокировать перед преодолением сложных участков пути (вязкий грунт, препятствия), и затем разблокировать после выезда на обычную дорогу. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях чаще всего не рекомендуется блокировать дифференциал, когда автомобиль движется, желательно включать блокировку на стоянке. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. Обычно производители автомобиля отдельно указывают рекомендованную максимальную скорость движения при заблокированном дифференциале, в случае её превышения возможны поломки трансмиссии. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 г. в команде «Макларен»: в повороте внутреннее колесо подтормаживалось рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с того же (2002) года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений гонщика. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

DPS

Dual Pump System — система с двумя насосами, автоматически подключающая вторую ось, когда не хватает одной. Применяется в системах полного привода Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Активный дифференциал

Термин означает любой дифференциал, устройство которого позволяет перераспределять мощность/тягу на ведомых звеньях в любой требуемой для данного момента движения пропорции. Именно в этом и есть отличие активного дифференциала от блокируемого, в котором мощность/тяга на ведомых звеньях может быть лишь выравнена до пропорции 50/50. Все активные дифференциалы имеют двухканальную систему управления и обязательно два управляющих элемента — два тормоза или два фрикциона — включающихся в работу по команде от внешних источников. Все активные дифференциалы помимо основной планетарной передачи, выполняющей функции свободной раздачи мощности, имеют парный комплект дополнительных планетарных или простых зубчатых передач, выполняющих функцию перераспределения мощности в свою сторону. Каждая из этих парных передач связана со своим управляющим элементом. Хотя какие-либо механизмы блокировки у активных дифференциалов отсутствуют, фактически, все активные дифференциалы также являются блокируемыми, только в них не один симметричный режим блокировки, а два несимметричных (по одному для каждой из двух сторон). В этих режимах управляющий элемент дифференциала работает без внутренней пробуксовки, а сам дифференциал превращается в понижающе-повышающую передачу. На легковых автомобилях с активными дифференциалами эти крайние режимы могут и не использоваться, зато они используются в дифференциальных механизмах поворота гусеничных машин.

Случаи отсутствия дифференциалов в трансмиссии

Наличие дифференциалов, делящих мощность, в трансмиссии транспортной машины не обязательно. Их отсутствие несомненно приводит к повышению нагрузок на трансмиссию и повышенному износу колёс, но с этим либо мирятся, либо в аспекте предполагаемой эксплуатации конкретной машины это не важно. Четырёхколёсный автомобиль с двумя ведущими колёсами в принципе может обходится без дифференциала — например, карт, или гоночный автомобиль с задней ведущей осью для гонок на покрытиях с низким коэффициентом сцепления. В экстра случаях дифференциал может отсутствовать даже и на гоночной машине для асфальта (пример — победитель гонки 24 часа Ле-Мана 1991 года Mazda 787B). На чисто переднеприводной машине межколёсный дифференциал должен быть обязательно, так как его отсутствие не позволит адекватно поворачивать независимо от типа дорожного покрытия. В полноприводных машинах могут отсутствовать межосевые дифференциалы, при этом опять же, либо это неважно в аспекте экплуатации машины (пример — гоночные машины WRC 2012-2016 годов), либо движение на такой машине допускается только на покрытиях с низким коэффициентом сцепления (пример — внедорожники с подключаемой передней осью типа УАЗ-469 или Jeep Wrangler). Дифференциалы отсутствуют на тяговых машинах ж/д транспорта — на электровозах, тепловозах, электропоездах, вагонах метро. Колёса одной оси этих машин за счёт конической поверхности круга катания и увеличения ширины колеи на дуге могут сдвигаться чуть в сторону от центра пути и тем самым обеспечивают разный диаметр в точках контакта колеса с рельсом. Плюс к этому, колёса могут проскальзывают при движении по дуге, издавая при этом специфический звук, что отчасти нивелируется наклоном рельсового полотна в кривых. Отдельные механизмы поворота гусеничных машин также могут обходиться без дифференциалов в своей конструкции — здесь движение машины по дуге определяется либо пробуксовкой фрикционных муфт, либо вообще машина имеет лишь несколько фиксированных радиусов поворота. Дифференциалов нет в веломобилях, где вместо них ради удешевления и простоты применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом тяга передаётся только на то колесо, которое медленнее вращается. Дифференциалов может не быть в мотоблоках и средствах малой механизации, где их отсутствие нивелируется предельно узкой колеёй колёс ведущей оси, легкодеформируемыми покрышками и низким коэффициентом сцепления между колёсами и землёй.

См. также

Примечания

  1. ↑ The Motor Vehicle K.Newton W.Steeds T.K.Garrett Ninth Edition pp549-550

Ссылки

wiki.sc

Дифференциал (математика) — Википедия

Материал из Википедии — свободной энциклопедии

Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции.

Обозначения

Обычно дифференциал функции f{\displaystyle f} обозначается df{\displaystyle df}. Некоторые авторы предпочитают обозначать df{\displaystyle {\rm {d}}f} шрифтом прямого начертания, желая подчеркнуть, что дифференциал является оператором.

Дифференциал в точке x0{\displaystyle x_{0}} обозначается dx0f{\displaystyle d_{x_{0}}f}, а иногда dfx0{\displaystyle df_{x_{0}}} или df[x0]{\displaystyle df[x_{0}]}, а также df{\displaystyle df}, если значение x0{\displaystyle x_{0}} ясно из контекста.

Соответственно, значение дифференциала в точке x0{\displaystyle x_{0}} от h{\displaystyle h} может обозначаться как dx0f(h){\displaystyle d_{x_{0}}f(h)}, а иногда dfx0(h){\displaystyle df_{x_{0}}(h)} или df[x0](h){\displaystyle df[x_{0}](h)}, а также df(h){\displaystyle df(h)}, если значение x0{\displaystyle x_{0}} ясно из контекста.

Использование знака дифференциала

Определения

Для функций

Дифференциал функции f:R→R{\displaystyle f\colon \mathbb {R} \to \mathbb {R} } в точке x0∈R{\displaystyle x_{0}\in \mathbb {R} } может быть определён как линейная функция

dx0f(h)=f′(x0)h,{\displaystyle d_{x_{0}}f(h)=f'(x_{0})h,}

где f′(x0){\displaystyle f'(x_{0})} обозначает производную f{\displaystyle f} в точке x0{\displaystyle x_{0}}, а h{\displaystyle h} — приращение аргумента при переходе от x0{\displaystyle x_{0}} к x0+h{\displaystyle x_{0}+h}.

Таким образом df{\displaystyle df} есть функция двух аргументов df:(x0,h)↦dx0f(h){\displaystyle df\colon (x_{0},h)\mapsto d_{x_{0}}f(h)}.

Дифференциал может быть определён напрямую, то есть, без привлечения определения производной, как функция dx0f(h){\displaystyle d_{x_{0}}f(h)}, линейно зависящая от h{\displaystyle h}, и для которой верно следующее соотношение

dx0f(h)=f(x0+h)−f(x0)+o(h).{\displaystyle d_{x_{0}}f(h)=f(x_{0}+h)-f(x_{0})+o(h).}

Для отображений

Дифференциалом отображения f:Rn→Rm{\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}} в точке x0∈Rn{\displaystyle x_{0}\in \mathbb {R} ^{n}} называют линейный оператор dx0f:Rn→Rm{\displaystyle d_{x_{0}}f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}} такой, что выполняется условие

dx0f(h)=f(x0+h)−f(x0)+o(h).{\displaystyle d_{x_{0}}f(h)=f(x_{0}+h)-f(x_{0})+o(h).}

Связанные определения

  • Отображение f:Rn→Rm{\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}} называется дифференцируемым в точке x0∈Rn{\displaystyle x_{0}\in \mathbb {R} ^{n}} если определён дифференциал dx0f:Rn→Rm{\displaystyle d_{x_{0}}f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}}.

Свойства

История

Термин «дифференциал» введён Лейбницем. Изначально dx{\displaystyle dx} применялось для обозначения «бесконечно малой» — величины, которая меньше всякой конечной величины и всё же не равна нулю. Подобный взгляд оказался неудобным в большинстве разделов математики за исключением нестандартного анализа.

Вариации и обобщения

Понятие дифференциала содержит в себе больше, чем просто дифференциал функции или отображения. Его можно обобщать получая различные важные объекты в функциональном анализе, дифференциальной геометрии, теории меры, нестандартном анализе, алгебраической геометрии и так далее.

Литература

  • Г. М. Фихтенгольц «Курс дифференциального и интегрального исчисления»

wikipedia.green

Дифференциал (дифференциальная геометрия) — Википедия

Материал из Википедии — свободной энциклопедии

Дифференциа́л (от лат. differentia — разность, различие) в математике — линейная часть приращения дифференцируемой функции или отображения. Это понятие тесно связано с понятием производной по направлению.

Обозначения

Обычно дифференциал f{\displaystyle f} обозначается df{\displaystyle df}. Некоторые авторы предпочитают обозначать d⁡f{\displaystyle \operatorname {d} f} шрифтом прямого начертания, желая подчеркнуть, что дифференциал является оператором. Дифференциал в точке x{\displaystyle x} обозначается dxf{\displaystyle d_{x}f}, а иногда dfx{\displaystyle df_{x}} или df[x]{\displaystyle df[x]}. (dxf{\displaystyle d_{x}f} есть линейная функция на касательном пространстве в точке x{\displaystyle x}.)

Если v{\displaystyle v} есть касательный вектор в точке x{\displaystyle x}, то значение дифференциала на v{\displaystyle v} обычно обозначается df(v){\displaystyle df(v)}, в этом обозначении x{\displaystyle x} излишне, но обозначения dxf(v){\displaystyle d_{x}f(v)}, dfx(v){\displaystyle df_{x}(v)} и df[x](v){\displaystyle df[x](v)} также правомерны.

Используется так же обозначение f∗{\displaystyle f_{*}}; последнее связано с тем, что дифференциал f:M→N{\displaystyle f\colon M\to N} является естественным поднятием f{\displaystyle f} на касательные расслоения к многообразиям M{\displaystyle M} и N{\displaystyle N}.

Определения

Для вещественнозначных функций

Пусть M{\displaystyle M} — гладкое многообразие и f:M→R{\displaystyle f\colon M\to \mathbb {R} } гладкая функция. Дифференциал f{\displaystyle f} представляет собой 1-форму на M{\displaystyle M}, обычно обозначается df{\displaystyle df} и определяется соотношением

df(X)=dpf(X)=Xf,{\displaystyle df(X)=d_{p}f(X)=Xf,}

где Xf{\displaystyle Xf} обозначает производную f{\displaystyle f} по направлению касательного вектора X{\displaystyle X} в точке p∈M{\displaystyle p\in M}.

Для отображений гладких многообразий

Дифференциал гладкого отображения из гладкого многообразия в многообразие F:M→N{\displaystyle F\colon M\to N} есть отображение между их касательными расслоениями, dF:TM→TN{\displaystyle dF\colon TM\to TN}, такое что для любой гладкой функции g:N→R{\displaystyle g\colon N\to \mathbb {R} } имеем

[dF(X)]g=X(g∘F),{\displaystyle [dF(X)]g=X(g\circ F),}

где Xf{\displaystyle Xf} обозначает производную f{\displaystyle f} по направлению X{\displaystyle X}. (В левой части равенства берётся производная в N{\displaystyle N} функции g{\displaystyle g} по dF(X){\displaystyle dF(X)}; в правой — в M{\displaystyle M} функции g∘F{\displaystyle g\circ F} по X{\displaystyle X}).

Это понятие естественным образом обобщает понятия дифференциала функции.

Связанные определения

Свойства

  • Дифференциал композиции равен композиции дифференциалов:
    d(F∘G)=dF∘dG{\displaystyle d(F\circ G)=dF\circ dG} или dx(F∘G)=dG(x)F∘dxG{\displaystyle d_{x}(F\circ G)=d_{G(x)}F\circ d_{x}G}

Примеры

  • Пусть в открытом множестве Ω⊂R{\displaystyle \Omega \subset \mathbb {R} } задана гладкая функция f:Ω→R{\displaystyle f\colon \Omega \to \mathbb {R} }. Тогда df=f′dx{\displaystyle df=f’\,dx}, где f′{\displaystyle f’} обозначает производную f{\displaystyle f}, а dx{\displaystyle dx} является постоянной формой, определяемой dx(V)=V{\displaystyle dx(V)=V}.
  • Пусть в открытом множестве Ω⊂Rn{\displaystyle \Omega \subset \mathbb {R} ^{n}} задана гладкая функция f:Ω→R{\displaystyle f\colon \Omega \to \mathbb {R} }. Тогда df=∑i=1n∂f∂xidxi{\displaystyle df=\sum _{i=1}^{n}{\frac {\partial f}{\partial x_{i}}}\,dx_{i}}. Форма dxi{\displaystyle dx_{i}} может быть определена соотношением dxi(V)=vi{\displaystyle dx_{i}(V)=v_{i}}, для вектора V=(v1,v2,…,vn){\displaystyle V=(v_{1},\;v_{2},\;\ldots ,\;v_{n})}.
  • Пусть в открытом множестве Ω⊂Rn{\displaystyle \Omega \subset \mathbb {R} ^{n}} задано гладкое отображение F:Ω→Rm{\displaystyle F\colon \Omega \to \mathbb {R} ^{m}}. Тогда
    dxF(v)=J(x)v,{\displaystyle d_{x}F(v)=J(x)v,}
где J(x){\displaystyle J(x)} есть матрица Якоби отображения F{\displaystyle F} в точке x{\displaystyle x}.

См. также

wikipedia.green

Дифференциал (математика) — Википедия. Что такое Дифференциал (математика)

Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции.

Обозначения

Обычно дифференциал функции f{\displaystyle f} обозначается df{\displaystyle df}. Некоторые авторы предпочитают обозначать df{\displaystyle {\rm {d}}f} шрифтом прямого начертания, желая подчеркнуть, что дифференциал является оператором.

Дифференциал в точке x0{\displaystyle x_{0}} обозначается dx0f{\displaystyle d_{x_{0}}f}, а иногда dfx0{\displaystyle df_{x_{0}}} или df[x0]{\displaystyle df[x_{0}]}, а также df{\displaystyle df}, если значение x0{\displaystyle x_{0}} ясно из контекста.

Соответственно, значение дифференциала в точке x0{\displaystyle x_{0}} от h{\displaystyle h} может обозначаться как dx0f(h){\displaystyle d_{x_{0}}f(h)}, а иногда dfx0(h){\displaystyle df_{x_{0}}(h)} или df[x0](h){\displaystyle df[x_{0}](h)}, а также df(h){\displaystyle df(h)}, если значение x0{\displaystyle x_{0}} ясно из контекста.

Использование знака дифференциала

Определения

Для функций

Дифференциал функции f:R→R{\displaystyle f\colon \mathbb {R} \to \mathbb {R} } в точке x0∈R{\displaystyle x_{0}\in \mathbb {R} } может быть определён как линейная функция

dx0f(h)=f′(x0)h,{\displaystyle d_{x_{0}}f(h)=f'(x_{0})h,}

где f′(x0){\displaystyle f'(x_{0})} обозначает производную f{\displaystyle f} в точке x0{\displaystyle x_{0}}, а h{\displaystyle h} — приращение аргумента при переходе от x0{\displaystyle x_{0}} к x0+h{\displaystyle x_{0}+h}.

Таким образом df{\displaystyle df} есть функция двух аргументов df:(x0,h)↦dx0f(h){\displaystyle df\colon (x_{0},h)\mapsto d_{x_{0}}f(h)}.

Дифференциал может быть определён напрямую, то есть, без привлечения определения производной, как функция dx0f(h){\displaystyle d_{x_{0}}f(h)}, линейно зависящая от h{\displaystyle h}, и для которой верно следующее соотношение

dx0f(h)=f(x0+h)−f(x0)+o(h).{\displaystyle d_{x_{0}}f(h)=f(x_{0}+h)-f(x_{0})+o(h).}

Для отображений

Дифференциалом отображения f:Rn→Rm{\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}} в точке x0∈Rn{\displaystyle x_{0}\in \mathbb {R} ^{n}} называют линейный оператор dx0f:Rn→Rm{\displaystyle d_{x_{0}}f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}} такой, что выполняется условие

dx0f(h)=f(x0+h)−f(x0)+o(h).{\displaystyle d_{x_{0}}f(h)=f(x_{0}+h)-f(x_{0})+o(h).}

Связанные определения

  • Отображение f:Rn→Rm{\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}} называется дифференцируемым в точке x0∈Rn{\displaystyle x_{0}\in \mathbb {R} ^{n}} если определён дифференциал dx0f:Rn→Rm{\displaystyle d_{x_{0}}f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}}.

Свойства

История

Термин «дифференциал» введён Лейбницем. Изначально dx{\displaystyle dx} применялось для обозначения «бесконечно малой» — величины, которая меньше всякой конечной величины и всё же не равна нулю. Подобный взгляд оказался неудобным в большинстве разделов математики за исключением нестандартного анализа.

Вариации и обобщения

Понятие дифференциала содержит в себе больше, чем просто дифференциал функции или отображения. Его можно обобщать получая различные важные объекты в функциональном анализе, дифференциальной геометрии, теории меры, нестандартном анализе, алгебраической геометрии и так далее.

Литература

  • Г. М. Фихтенгольц «Курс дифференциального и интегрального исчисления»

wiki.sc

Дифференциал (автомобиль) Википедия

дифференциал автомобиля, канонический вид Задний ведущий мост, в нём стоит дифференциал.

Дифференциа́л (от лат. differentia – разность, различие) — в общем случае есть механизм по передаче мощности вращением, позволяющий без каких-либо пробуксовок и потерь КПД складывать два независимых по своим угловым скоростям входящих потока мощности в один исходящий, раскладывать один входящий поток мощности на два взаимозависимых по своим угловым скоростям исходящих, а также работать в первом и втором вариантах попеременно. Основное назначение дифференциала в технике — трансмиссии транспортных машин, в которых дифференциал разветвляет поток мощности от двигателя на два между колёсами, осями, гусеницами, воздушными и водными винтами. Прочее использование дифференциалов в технике вообще и в транспортной технике в частности является вторичным и нечастым. Механической основой дифференциала по умолчанию является планетарная передача, как единственная из всех передач вращательного движения, имеющая две степени свободы.

Назначение

Необходимость применения дифференциала в конструкции привода автомобилей обусловлена тем, что внешнее колесо при повороте проходит более длинную дугу, чем внутреннее. То есть при вращении ведущих колёс с одинаковой скоростью поворот возможен только с пробуксовкой, а это негативно сказывается на управляемости и сильно повышает износ шин.

Назначение дифференциала в автомобилях:

  • позволяет ведущим колёсам вращаться с разными угловыми скоростями;
  • неразрывно передаёт крутящий момент от двигателя на ведущие колёса;

В случае единственного приводного колеса или отдельного двигателя для каждого из ведущих колёс дифференциал не требуется. В конструкции раллийных автомобилей иногда дифференциал намертво блокируют (заваривают), жёстко связывая колёса ведущей оси — это допустимо, так как на гравии или снегу в ралли повороты проходятся только с заносом. Также дифференциал отсутствует в конструкции картов, при этом гибкость их рам обычно позволяет вывешивать ведущее заднее колесо с внутренней стороны поворота без отрыва передних колёс от трассы. В веломобилях с ведущей осью вместо дифференциала часто применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом весь момент передаётся только на то колесо, которое медленнее вращается.

Устройство

планетарный механизм любой схемы может выполнять функцию дифференциала

Основой любого дифференциала может быть только планетарная передача, которая в силу механики своей работы единственная из всех передач вращательного движения может решать задачи, стоящие перед дифференциалом в трансмиссии. Термин «планетарный дифференциал» является избыточным — любой дифференциал планетарный. Работоспособность как дифференциала абсолютно не зависит ни от её состава или формы, ни от выбора конкретных звеньев под ведущие или ведомые. Любая в самом простом своём варианте — трёхзвенного планетарного механизма без каких-либо управляющих элементов — может выполнять функции по разложению одного потока на два взаимосвязанных или сложению двух независимых потоков в один. Выбор иных звеньев в качестве ведущих, а других в качестве ведомых определяется лишь требуемой кинематикой связей дифференциала с другими элементами трансмиссии и особенностями механики работы дифференциала в выбранном формате распределения функций между звеньями. Дополнение управляющими элементами и применение так называемых сложных планетарных механизмов наделяет дифференциал возможностями по взаимовыравниванию угловых скоростей потоков и возможностями по активному управлению этими скоростями.

Дифференциал автомобиля Porsche Cayenne в разрезе

Каноническим, наиболее известным видом дифференциала является межколёсный дифференциал автомобиля, выполненный на основе простого (то есть, трёхзвенного) пространственного планетарного механизма схемы на четырёх конических шестернях. Водилом планетарной передачи такого дифференциала фактически служит весь его корпус — это ведущее звено ➁. Две шестерни являются сателлитами на общей оси ➂. И две шестерни являются двумя солнцами — двумя ведомыми звеньями ➃. Подача мощности осуществляется на корпус (водило) через жёстко закреплённую ведомую шестерню главной передачи, которая в свою очередь в паре с ведущей шестернёй ➀ формально есть другой элемент трансмиссии, несмотря на то, что дифференциал с ведомой шестернёй зачастую выглядит как единый сборочный узел. Снятие мощности осуществляется с двух солнц, к которым в данном случае пристыкованы валы с шарнирами типа ШРУС.

Расположение

На автомобилях с одной ведущей осью дифференциал располагается на ведущей оси.

На автомобилях со сдвоенной ведущей осью два дифференциала, по одному на каждой оси.

На автомобилях с подключаемым полным приводом по одному дифференциалу на каждой оси. На таких машинах не рекомендуется ездить по дорогам с плотным покрытием с включенным полным приводом.

На автомобилях с постоянным полным приводом есть три дифференциала: по одному на каждой оси (межколёсный), плюс один распределяет крутящий момент между осями (межосевой).

При трёх или четырёх ведущих мостах (колёсная формула 6 × 6 или 8 × 8) добавляется ещё межтележечный дифференциал.

Проблема буксующего колеса

Обычный («свободный») дифференциал отлично работает, пока ведущие колёса неразрывно связаны с дорогой. Но, когда одно из колёс теряет сцепление (оказывается в воздухе или на льду), то вращается именно это колесо, в то время как другое, стоящее на твёрдой земле, неподвижно. В случае потери сцепления одним из колёс, его сопротивление вращению падает, а раскрутка происходит без существенного увеличения момента сопротивления (трение скольжения в пятне контакта меньше трения покоя и несущественно зависит от скорости пробуксовки). В момент когда колесо начинает проскальзывать, крутящие моменты на колесах не равны друг другу, а обратно пропорциональны сопротивлению вращения колес.

При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей. Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней, наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется, — ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

История способов решения проблемы буксующего колеса

  • 1825 — Онесифор Пеккёр (Onesiphore Pecqueur, 1792—1852) изобрёл дифференциал.
  • 1932 — Фердинанд Порше начал исследования в области дифференциалов c проскальзыванием.
  • 1935 — компания «ZF Friedrichshafen AG», сотрудничающая с «Порше», выпустила на рынок кулачковый дифференциал, примененный впоследствии на ранних моделях Фольксваген (Type B-70)[1]
  • 1956 — американская компания Packard одной из первых начала выпуск моделей с -дифференциалом под фирменным названием «Twin Traction». В 60-х годах многие компании начали производство LSD-дифференциалов под различными фирменными названиями:
  • Alfa Romeo: Q2
  • American Motors: Twin-Grip
  • Buick: Positive Traction
  • Cadillac : Controlled
  • Chevrolet/GMC: Positraction
  • Chrysler: Sure Grip
  • Dana Corporation:Trak-Lok or Powr-Lok
  • Ferrari: E-Diff
  • Fiat: Viscodrive
  • Ford: Equa-Lock and Traction-Lok
  • International: Trak-Lok или Power-Lok
  • Jeep: Trac-Lok (clutch-type mechanical), Tru-Lok (gear-type mechanical), and Vari-Lok (gerotor pump), Power Lok
  • Oldsmobile: Anti-Spin
  • Pontiac: Safe-T-Track
  • Porsche: PSD (electro-hydraulic mechanical)
  • Saab: Saab XWD eLSD
  • Studebaker-Packard Corporation: Twin Traction

Самоблокирующийся дифференциал

Термин обозначает любой дифференциал, механика работы которого позволяет ему самостоятельно блокироваться — то есть, в первую очередь, выравнивать угловые скорости ведомых шестерён и превращаться в прямую передачу. Самоблокирующиеся дифференциалы не требуют никаких внешних систем управления и работают автономно. В автомобилях могут использоваться и как межколёсные и как межосевые. В гусеничной технике принципиально не используются. Условно все такие дифференциалы можно разделить на две группы: срабатывающие от крутящего момента и срабатывающие от разницы угловых скоростей на ведомых шестернях. В первую группу попадают дифференциалы с винтовой, червячной и дисковой блокировками. Во вторую — дифференциалы с вискомуфтой, дифференциалы с героторным насосом, дифференциалы с центробежным автоматом включения (Eaton G80), дифференциалы с обгонными муфтами (Ferguson). Такие конструкции, как кулачковые дифференциалы и дифференциалы Красикова/Нестерова, в контексте принципов срабатывания блокировки вероятно можно считать чем-то промежуточным.

Принудительно блокируемые дифференциалы

Ручная блокировка дифференциала

Дифференциал с принудительной блокировкой

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал стоит блокировать перед преодолением сложных участков пути (вязкий грунт, препятствия), и затем разблокировать после выезда на обычную дорогу. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях чаще всего не рекомендуется блокировать дифференциал, когда автомобиль движется, желательно включать блокировку на стоянке. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. Обычно производители автомобиля отдельно указывают рекомендованную максимальную скорость движения при заблокированном дифференциале, в случае её превышения возможны поломки трансмиссии. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, то оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 году. В болиде McLaren MP4/13 команды «Макларен» при повороте гонщик мог притормозить внутреннее колесо рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с того же (2002) года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений водителя. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

DPS

Основная статья: DPS

Dual Pump System — система с двумя насосами, автоматически подключающая вторую ось, когда не хватает одной. Применяется в системах полного привода Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Имитация блокировки дифференциала

Имитация блокировки дифференциала (далее ИБД) — выравнивание частоты вращения буксующего и небуксующего колёс наподобие того, как это выглядит в случаях реальной механической блокировки дифференциала, только не за счёт механической связи колёс или принудительного снижения КПД дифференциала, а за счёт торможения буксующего колеса рабочим тормозом. При этом, согласно принципам работы любого дифференциала, на имеющем низкую силу сцепления с дорогой буксующем колесе тормозное усилие вызывает рост крутящего момента, что приводит к сравнимому росту крутящего момента на имеющем высокую силу сцепления с дорогой отстающем колесе, что, в свою очередь, позволяет использовать его зацеп с дорогой и тем самым даёт эффект в виде общего роста силы тяги оси. Главный управляющий механизм всех систем ИБД — АБС тормозов. Работа системы ИБД выражается в кратковременном импульсном подтормаживании буксующего колеса рабочим тормозом, и её эффективность определяется частотой срабатывания, поэтому системы ИБД стали возможны только вместе с появлением современных высокочастотных АБС тормозов.

ИБД есть именно имитация. В отличие от любых систем реальной блокировки дифференциала, которые при срабатывании как бы выводят дифференциал из работы и тем самым позволяют перераспределять крутящие моменты до некоего соотношения, декларируемого коэффициентом блокировки, ИБД ни при каких условиях не может вывести дифференциал из работы, и в процессе работы ИБД крутящие моменты всегда находятся в единственно возможной пропорции, присущей данному дифференциалу (для межколёсного дифференциала это обычно 50/50). Невозможность произвольно перераспределять крутящие моменты в соответствии с имеющимися силами сцепления на колёсах есть неустранимый недостаток любой системы ИБД, и именно поэтому ИБД обычно не применяется на настоящих внедорожниках, эксплуатация которых предполагает случаи движения при ежесекундно произвольно меняющихся силах сцепления на колёсах в максимально широком диапазоне от 0 до 100 процентов. Другим неустранимым недостатком любых систем ИБД есть то, что при срабатывании ИБД некоторая часть мощности двигателя тратится на преодоление тормозного усилия, что понижает величину эффективно используемой мощности для движения. Также само заторможенное колесо может увеличивать общее сопротивления движению, хотя современные высокочастотные системы ИБД стараются этого не допускать.

Системы ИБД могут применяться на автомобиле как сами по себе, так и вместе с различными системами настоящей блокировки. Совместная работа обеих систем может строится как по взаимоисключающему, так и по взаимодополняющему принципу. Потенциально система ИБД может применять на машинах любых типов. В сравнении с механически блокируемыми дифференциалами ИБД не теряет своих качеств от эксплуатации, не требует регулировок и специального техобслуживания, не требует от водителя специальных навыков езды.

Системы ИБД не являются противобусовочными системами в чистом виде, и в отличие от них ИБД никак не влияют на управление двигателем автомобиля, а решают задачу по максимизации силы тяги при императивно заданном водителем уровне доступной мощности.

Активный дифференциал

Термин означает любой дифференциал, устройство которого позволяет перераспределять мощность/тягу на ведомых звеньях в любой требуемой для данного момента движения пропорции. Именно в этом и есть отличие активного дифференциала от блокируемого, в котором управление мощностью на ведомых звеньях в принципе не возможно, и таковая определяется исключительно силами сцепления. Все активные дифференциалы имеют двухканальную систему управления и обязательно два управляющих элемента — два тормоза или два фрикциона — включающихся в работу по команде от внешних источников. Все активные дифференциалы помимо основной планетарной передачи, выполняющей функции свободной раздачи мощности, имеют парный комплект дополнительных планетарных или простых зубчатых передач, выполняющих функцию перераспределения мощности в свою сторону. Каждая из этих парных передач связана со своим управляющим элементом. Хотя какие-либо механизмы блокировки у активных дифференциалов отсутствуют, фактически, все активные дифференциалы также являются блокируемыми, только в них не один симметричный режим блокировки, а два несимметричных (по одному для каждой из двух сторон). В этих режимах управляющий элемент дифференциала работает без внутренней пробуксовки, а сам дифференциал превращается в понижающе-повышающую передачу. На легковых автомобилях с активными дифференциалами эти крайние режимы могут и не использоваться, зато они используются в дифференциальных механизмах поворота гусеничных машин.

Случаи отсутствия дифференциалов в трансмиссии

Наличие дифференциалов, делящих мощность, в трансмиссии транспортной машины не обязательно. Их отсутствие несомненно приводит к повышению нагрузок на трансмиссию и повышенному износу колёс, но с этим либо мирятся, либо в аспекте предполагаемой эксплуатации конкретной машины это не важно. Четырёхколёсный автомобиль с двумя ведущими колёсами в принципе может обходится без дифференциала — например, карт, или гоночный автомобиль с задней ведущей осью для гонок на покрытиях с низким коэффициентом сцепления. В экстра случаях дифференциал может отсутствовать даже и на гоночной машине для асфальта (пример — победитель гонки 24 часа Ле-Мана 1991 года Mazda 787B). На чисто переднеприводной машине межколёсный дифференциал должен быть обязательно, так как его отсутствие не позволит адекватно поворачивать независимо от типа дорожного покрытия. В полноприводных машинах могут отсутствовать межосевые дифференциалы, при этом опять же, либо это неважно в аспекте экплуатации машины (пример — гоночные машины WRC 2012-2016 годов), либо движение на такой машине допускается только на покрытиях с низким коэффициентом сцепления (пример — внедорожники с подключаемой передней осью типа УАЗ-469, ГАЗель 4х4, Соболь 4х4 или Jeep Wrangler). Дифференциалы отсутствуют на тяговых машинах ж/д транспорта — на электровозах, тепловозах, электропоездах, вагонах метро. Колёса одной оси этих машин за счёт конической поверхности круга катания и увеличения ширины колеи на дуге могут сдвигаться чуть в сторону от центра пути и тем самым обеспечивают разный диаметр в точках контакта колеса с рельсом. Плюс к этому, колёса могут проскальзывать при движении по дуге, издавая при этом специфический звук, что отчасти нивелируется наклоном рельсового полотна в кривых. Отдельные механизмы поворота гусеничных машин также могут обходиться без дифференциалов в своей конструкции — здесь движение машины по дуге определяется либо пробуксовкой фрикционных муфт, либо вообще машина имеет лишь несколько фиксированных радиусов поворота. Дифференциалов нет в веломобилях, где вместо них ради удешевления и простоты применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом тяга передаётся только на то колесо, которое медленнее вращается. Дифференциалов может не быть в мотоблоках и средствах малой механизации, где их отсутствие нивелируется предельно узкой колеёй колёс ведущей оси, легкодеформируемыми покрышками и низким коэффициентом сцепления между колёсами и землёй.

См. также

Примечания

  1. ↑ The Motor Vehicle K.Newton W.Steeds T.K.Garrett Ninth Edition pp549-550

Ссылки

wikiredia.ru

Дифференциал (автомобиль) — это… Что такое Дифференциал (автомобиль)?

Устройство дифференциала(центральная часть)

Дифференциа́л — это механическое устройство, которое передает вращение с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга.

Назначение

В моделях автомобилей и картах ведущие колёса находятся на одной общей оси. Это нормально, когда автомобиль едет по прямой. Однако в повороте внутреннее колесо проходит меньший путь, чем внешнее, поэтому такая конструкция приводит к пробуксовке внутреннего колеса, что негативно сказывается на управляемости автомобиля, особенно при движении на больших скоростях. Для того, чтобы ведущие колёса вращались несинхронно, и применяется дифференциал.

Назначение дифференциала:

  • Передаёт крутящий момент с двигателя на ведущие колёса.
  • Служит дополнительной понижающей передачей.
  • Позволяет колёсам вращаться с разными угловыми скоростями (из-за этого дифференциал и получил своё название).

Расположение

На автомобилях с одной ведущей осью дифференциал располагается на ведущей оси.

На автомобилях со сдвоенной ведущей осью два дифференциала, по одному на каждой оси.

На вездеходах с отключаемым полным приводом по одному дифференциалу на каждой оси. На таких машинах не рекомендуется ездить по дорогам с включенным полным приводом.

На полноприводных автомобилях есть три дифференциала: по одному на каждой оси (межколёсный), плюс один распределяет крутящий момент между осями (межосевой).

При трёх или четырёх ведущих мостах (колёсная формула 6×6 или 8×8) добавляется ещё межтележечный дифференциал.

Устройство

Дифференциал в разрезе

Классические автомобильные дифференциалы основаны на планетарной передаче. Карданный вал 1 через коническую зубчатую передачу вращает редуктор 2. Редуктор через независимые друг от друга шестерни 3 вращает полуоси 4. Такое зацепление имеет не одну, а две степени свободы, и каждая из полуосей вращается с такой скоростью, с какой может. Постоянна лишь суммарная скорость вращения полуосей.

Проблема буксующего колеса

У обычного дифференциала, если одно из колёс находится на льду или в воздухе, крутиться будет именно это колесо (при этом второе колесо, стоящее на твёрдой земле, неподвижно; логичнее было бы передавать крутящий момент на него).

Аналогично, у гоночного автомобиля в повороте внутреннее колесо загружено слабее внешнего, поэтому на внешнее колесо передаётся недостаточный крутящий момент, в то время как внутреннее находится на грани пробуксовки.

Таким образом, проблема буксующего колеса ухудшает управляемость и проходимость автомобиля.

Способы решения проблемы буксующего колеса

Ручная блокировка дифференциала

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал можно заблокировать на вязком грунте, и отключить блокировку на асфальте. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях нельзя включать блокировку, когда автомобиль движется. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. На заблокированном дифференциале можно ездить только на малых скоростях и только на труднопроходимой местности. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 г. в команде «Макларен»: в повороте внутреннее колесо подтормаживалось рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с этого года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений гонщика. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

Фрикционный самоблокирующийся дифференциал

Этот тип дифференциала (как, впрочем, и вязкостная муфта) основан на том, что на прямой полуоси вращаются синхронно с ротором, но в повороте появляется разница в угловых скоростях.

Между ротором 2 и полуосью 4 сделан фрикцион (в зависимости от конструкции, фрикцион может быть на одной полуоси или на двух; на ходовые качества это не влияет). Когда автомобиль движется по прямой, ротор и полуось вращаются с одной и той же скоростью, и трения нет. Чем больше разность в скорости полуосей, тем выше сила трения.

Наиболее эффективный вид дифференциала, он требует периодического обслуживания и поэтому никогда не устанавливается на серийные машины (только на спортивные и тюнингованные).

Вязкостная муфта

Упрощённый вариант фрикционного дифференциала. На одной из полуосей имеется резервуар, заполненный вязкой жидкостью. В эту жидкость погружены два пакета дисков; один соединён с ротором, второй с полуосью. Чем больше разница в скоростях колёс, тем больше разница в скоростях вращения дисков, и тем больше вязкое сопротивление.

Достоинство такой конструкции в простоте и дешевизне. Недостаток в том, что вязкостная муфта довольно инерционна и отказывается работать на полном бездорожье. Хороших ходовых качеств вязкостная муфта не обеспечивает, и применяется только в «паркетниках» (внедорожниках, которые жертвуют проходимостью ради комфорта) между осями. Для установки в качестве осевого дифференциала такая конструкция слишком громоздка.

Иногда вместо дифференциала ставят коническую зубчатую передачу с вязкостной муфтой на одной из полуосей.

Кулачковый/зубчатый самоблокирующийся дифференциал

Принцип действия аналогичен, но полуоси соединяются зубчатой или кулачковой парой. Таким образом, при пробуксовке одного из колёс дифференциал резко блокируется. Поэтому такая система применяется только в военной и специальной технике (например, в бронетранспортёрах), где нужно большое тяговое усилие и высокая долговечность в ущерб управляемости.

Гидророторный самоблокирующийся дифференциал

Попытка повысить эффективность и долговечность фрикционного дифференциала. При возникновении разницы в угловых скоростях насос закачивает жидкость в цилиндр, и поршень сжимает фрикционный пакет, блокируя дифференциал.

DPS

Основная статья: Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Гипоидные самоблокирующиеся дифференциалы

Существует три типа таких дифференциалов. Все они основаны на свойстве гипоидной зубчатой или червячной передачи «заклинивать» при определённом соотношении крутящих моментов. Такие дифференциалы передают бо́льшую часть крутящего момента (до 80 %) небуксующему колесу.

Есть ещё два типа дифференциалов, основанных на этом же свойстве: дифференциал типа Quaife и планетарный дифференциал.

Применяются во внедорожниках и гоночных автомобилях. Недостатки: сложность; бо́льшая потеря мощности, чем у обычного дифференциала.

Дифференциал Torsen

Дифференциал типа Torsen изобретён в 1958 г. американцем Верноном Глизманом. Имеет достоинства вязкостной муфты и не имеет её недостатков. Название Torsen произошло от англ. Torque sensitive («чувствительный к крутящему моменту»). Torsen — товарный знак JTEKT Torsen North America Inc.

Конструкция дифференциала Торсен основана на червячных шестернях, вращающихся на различных осях. Каждая боковая шестерня является червячной шестерней с шлицевым соединением с выходными чашками. Внутри находится 2 или 3 набора планетарных червячных шестерен (называемых элементными шестернями), перпендикулярных к оси боковых шестерен. Каждый набор состоит из 2-х червячных шестерен, соединенных между собой посредством ведомых шестерен, и зацепленных с боковыми шестернями. Таким образом, две боковые шестерни соединены между собой посредством элементных червячных шестерен.

При изменении сцепления на колесе, давление между элементными шестернями и боковыми шестернями изменяется, вызывая контрвращение элементной пары, смещая вращающий момент на другую сторону. В отличие от других конструкций, датчики вращающего момента работают практически в любых условиях. Даже если колеса вращаются с различными скоростями (поворот, прохождение через ухабы), они тем не менее всегда получают вращающий момент основанный на сцеплении.

См. также

Ссылки

Wikimedia Foundation. 2010.

  • Дифференциальная геометрия
  • Дифракция волн

Смотреть что такое «Дифференциал (автомобиль)» в других словарях:

  • ДИФФЕРЕНЦИАЛ — • ДИФФЕРЕНЦИАЛ, в математике малое изменение величины в математическом выражении вследствие такого же незначительного изменения переменной. Если обозначить функцию х как f(x), то дифференциал функции, образующийся вследствие небольшого изменения… …   Научно-технический энциклопедический словарь

  • Дифференциал — (Differential) Определение дифферинциала, дифферинциал функции, блокировка дифферинциала Информация об определении дифферинциала, дифферинциал функции, блокировка дифферинциала Содержание Содержание математический Неформальное описание… …   Энциклопедия инвестора

  • Дифференциал (механика) — У этого термина существуют и другие значения, см. Дифференциал (значения). Устройство дифференциала (центральная часть) Дифференциал это механическое устройство, котор …   Википедия

  • Автомобиль — (от Авто… и лат. mobilis движущийся)         средство безрельсового транспорта с собственным двигателем.          Историческая справка. Ещё в средние века были известны попытки создания повозок, которые должны были передвигаться силой ветра или …   Большая советская энциклопедия

  • Автомобиль — (история и техника) Идея самодвижущейся повозки появилась одновременно с идеей паровой машины. Первое и неудачное осуществление этой идеи принадлежит французскому артиллеристу Кюньо (1769 г., см. соотв. статью). В 1781 г. Мурдок (Murdock), один… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Автомобиль (история и техника) — Идея самодвижущейся повозки появилась одновременно с идеей паровой машины. Первое и неудачное осуществление этой идеи принадлежит французскому артиллеристу Кюньо (1769 г., см. соотв. статью). В 1781 г. Мурдок (Murdock), один из мастеров на заводе …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • АВТОМОБИЛЬ ЛЕГКОВОЙ — самодвижущееся четырехколесное транспортное средство с двигателем, предназначенное для перевозок небольших групп людей по автодорогам. Легковой автомобиль, обычно вмещающий от одного до шести пассажиров, именно этим, в первую очередь, отличается… …   Энциклопедия Кольера

  • автомобиль — я; м. [франц. automobile от греч. autos сам и лат. mobilis подвижный, легко двигающийся]. Самоходная машина с двигателем внутреннего сгорания для перевозки пассажиров и грузов по безрельсовым дорогам. Легковой а. (пассажирский автомобиль с… …   Энциклопедический словарь

  • автомобиль — самоходная транспортная машина, обычно на колёсном (реже полугусеничном) ходу, приводимая в движение собственным двигателем. Различают автомобили пассажирские (легковые, автобусы), грузовые, специальные (пожарные, санитарные, автокран, автолавка …   Энциклопедия техники

  • автомобиль — Расположение основных механизмов и сборочных единиц автомобиля: 1 — управляемое колесо; 2 — передняя подвеска; 3 — муфта сцепления; 4 — коробка передач; 5 — карданная передача; 6 — главная передача; 7 —… …   Сельское хозяйство. Большой энциклопедический словарь

dik.academic.ru