C 2h2: Ацетилен — Википедия – Этилен — Википедия

Ацетилен — Википедия

Ацетилен
Acetylene-CRC-IR-dimensions-2D.png
({{{картинка}}})
Acetylene ball-and-stick.png({{{картинка3D}}})
Acetylene-3D-vdW.png({{{изображение}}})
Систематическое
наименование
Этин
Традиционные названия Ацетилен
Хим. формула C2H2
Рац. формула HCCH
Молярная масса 26,038[1] г/моль
Плотность 1,0896 г/л
Энергия ионизации 11,4 ± 0,1 эВ[2]
Температура
 • плавления -80,8 1277 мм Hg °C
 • сублимации −119 ± 1 °F[2]
 • кипения −83,6 °C
 • самовоспламенения 335 °C
Пределы взрываемости 2,5 ± 0,1 об.%[2]
Тройная точка −80,55
Критическая точка 35,2°С; 6,4 МПа
Мол. теплоёмк. 44,036 Дж/(моль·К)
Энтальпия
 • образования +226,88 кДж/моль
 • сгорания –1302 кДж/моль
Давление пара 44,2 ± 0,1 атм[2]
Константа диссоциации кислоты pKa{\displaystyle pK_{a}} 25
Растворимость
 • в воде 10018 мл/100 мл
 • в этаноле 60018 мл/100 мл
Гибридизация sp
Рег. номер CAS 74-86-2
PubChem 6326
Рег. номер EINECS 200-816-9
SMILES
InChI
RTECS AO9600000
ChEBI 27518
Номер ООН 1001
ChemSpider 6086
Пиктограммы ECB Пиктограмма «F+: Крайне огнеопасно» системы ECB
NFPA 704 NFPA 704 four-colored diamond
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Commons-logo.svg
 Медиафайлы на Викискладе

Ацетиле́н (по ИЮПАК — этин) — органическое соединение, непредельный углеводород C2H2. Имеет тройную связь между атомами углерода, принадлежит к классу алкинов. При нормальных условиях — бесцветный, очень горючий газ.

В лаборатории[править | править код]

В лаборатории, а также в газосварочном оборудовании, ацетилен получают действием воды на карбид кальция[3] (Ф. Вёлер, 1862 год)[4]:

CaC2+2h3O→Ca(OH)2+C2h3↑{\displaystyle {\mathsf {CaC_{2}+2H_{2}O\rightarrow Ca(OH)_{2}+C_{2}H_{2}\uparrow }}}

а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:

2Ch5→C2h3+3h3{\displaystyle {\mathsf {2CH_{4}\rightarrow C_{2}H_{2}+3H_{2}}}}

В промышленности[править | править код]

В промышленности ацетилен получают гидролизом карбида кальция и пиролизом углеводородного сырья — метана или пропана с бутаном. В последнем случае ацетилен получают совместно с этиленом и примесями других углеводородов. Карбидный метод позволяет получать очень чистый ацетилен, но требует высокого расхода электроэнергии. Пиролиз существенно менее энергозатратен, т.к. для нагрева реактора используется сгорание того же рабочего газа во внешнем контуре, но в газовом потоке продуктов концентрация самого ацетилена низка. Выделение и концентрирование индивидуального ацетилена в таком случае представляет сложную задачу. Экономические оценки обоих методов многочисленны, но противоречивы

[5][:стр. 274].

Получение пиролизом[править | править код]
Электрокрекинг[править | править код]

Метан превращают в ацетилен и водород в электродуговых печах (температура 2000—3000 °С, напряжение между электродами 1000 В). Метан при этом разогревается до 1600 °С. Расход электроэнергии составляет около 13000 кВт•ч на 1 тонну ацетилена, что относительно много (примерно равно затрачиваемой энергии по карбидному методу) и потому является недостатком процесса. Выход ацетилена составляет 50 %.

Регенеративный пиролиз[править | править код]

Иное название — Вульф-процесс. Сначала разогревают насадку печи путём сжигания метана при 1350—1400 °С. Далее через разогретую насадку пропускают метан. Время пребывания метана в зоне реакции очень мало и составляет доли секунды. Процесс реализован в промышленности, но экономически оказался не таким перспективным, как считалось на стадии проектирования.

Окислительный пиролиз[править | править код]

Метан смешивают с кислородом. Часть сырья сжигают, а образующееся тепло расходуют на нагрев остатка сырья до 1600 °С. Выход ацетилена составляет 30—32 %. Метод имеет преимущества — непрерывный характер процесса и низкие энергозатраты. Кроме того, с ацетиленом образуется еще и синтез-газ. Этот процесс (Заксе-процесс или BASF-процесс) получил наиболее широкое внедрение.

Гомогенный пиролиз[править | править код]

Является разновидностью окислительного пиролиза. Часть сырья сжигают с кислородом в топке печи, газ нагревается до 2000 °С. Затем в среднюю часть печи вводят остаток сырья, предварительно нагретый до 600 °С. Образуется ацетилен. Метод характеризуется большей безопасностью и надёжностью работы печи.

Пиролиз в струе низкотемпературной плазмы[править | править код]

Процесс разрабатывается с 1970-х годов, но, несмотря на перспективность, пока не внедрён в промышленности. Сущность процесса состоит в нагреве метана ионизированным газом. Преимущество метода заключается в относительно низких энергозатратах (5000—7000 кВт•ч) и высоких выходах ацетилена (87 % в аргоновой плазме и 73 % в водородной).

Карбидный метод[править | править код]

Этот способ известен с XIX века, но не потерял своего значения до настоящего времени. Сначала получают карбид кальция, сплавляя оксид кальция (негашёную известь) и кокс в электропечах при 2500—3000 °С:

CaO+3C→CaC2+CO↑{\displaystyle {\mathsf {CaO+3C\rightarrow CaC_{2}+CO\uparrow }}}

Негашёную известь получают из карбоната кальция:

CaCO3→CaO+CO2↑{\displaystyle {\mathsf {CaCO_{3}\rightarrow CaO+CO_{2}\uparrow }}}

Далее карбид кальция обрабатывают водой:

CaC2+2h3O→C2h3+Ca(OH)2{\displaystyle {\mathsf {CaC_{2}+2H_{2}O\rightarrow C_{2}H_{2}+Ca(OH)_{2}}}}

Получаемый ацетилен имеет высокую степень чистоты 99,9 %. Основным недостатком процесса является высокий расход электроэнергии: 10000—11000 кВт•ч на 1 тонну ацетилена.

{\mathsf  {CaC_{2}+2H_{2}O\rightarrow C_{2}H_{2}+Ca(OH)_{2}}}
Рис.1. Пи-связи в молекуле ацетилена

При нормальных условиях — бесцветный газ, легче воздуха. Чистый 100 % ацетилен не обладает запахом. Технический ацетилен хранится в баллонах с пористым наполнителем, пропитанным ацетоном (т.к. чистый ацетилен при сжатии взрывается), и может содержать другие примеси, которые придают ему резкий запах[6]. Малорастворим в воде, хорошо растворяется в ацетоне. Температура кипения −83,6 °C[7]. Тройная точка −80,55 °C при давлении 961,5 мм рт. ст., критическая точка 35,18 °C при давлении 61,1 атм[8].

Ацетилен требует большой осторожности при обращении. Может взрываться от удара, при нагреве до 500 °C или при сжатии выше 0,2 МПа[4] при комнатной температуре. Струя ацетилена, выпущенная на открытый воздух, может загореться от малейшей искры, в том числе от разряда статического электричества с пальца руки. Для хранения ацетилена используются специальные баллоны, заполненные пористым материалом, пропитанным ацетоном[9].

Ацетилен обнаружен на Уране и Нептуне.

Ацетилено-кислородное пламя (температура «ядра» 2621 °C)
  • Для ацетилена (этина) характерны реакции присоединения:
HC≡CH+Cl2⟶ClCH=CHCl{\displaystyle {\ce {HC#CH + Cl_2 -> ClCH=CHCl}}}

Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекула высокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м³ (50,4 МДж/кг). При сгорании в кислороде температура пламени достигает 3150 °C. Ацетилен может полимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в ~500 °C. В присутствии катализаторов, например, трикарбонил(трифенилфосфин)никеля, температуру реакции циклизации можно снизить до 60—70 °C.

Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так, ацетилен вытесняет метан из эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра и одновалентной меди.

Основные химические реакции ацетилена (реакции присоединения, сводная таблица 1.)

:

Реакции ацетилена-1

Основные химические реакции ацетилена (реакции присоединения, димеризации, полимеризации, цикломеризации, сводная таблица 2.):

Реакции ацетилена-2

Ацетилен обесцвечивает бромную воду и раствор перманганата калия.

Реагирует с аммиачными растворами солей Cu(I) и Ag(I) с образованием малорастворимых, взрывчатых ацетиленидов — эта реакция используется для качественного определения ацетилена и его отличия от алкенов (которые тоже обесцвечивают бромную воду и раствор перманганата калия).

Открыт в 1836 году Э. Дэви, синтезирован из угля и водорода (дуговой разряд между двумя угольными электродами в атмосфере водорода) М. Бертло (1862 год).

Реакции ацетилена-2 Ацетиленовая лампа

Ацетилен используют:

  • для газовой сварки и резки металлов,
  • как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (см. карбидная лампа),
  • в производстве взрывчатых веществ (см. ацетилениды),
  • для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.
  • для получения технического углерода
  • в атомно-абсорбционной спектрофотометрии при пламенной атомизации
  • в ракетных двигателях (вместе с аммиаком)[10]

Поскольку ацетилен нерастворим в воде, и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры.

Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3—80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

При длительном соприкосновении ацетилена с медью и серебром образуются ацетилениды меди и серебра, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов).

Ацетилен обладает незначительным токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м³ согласно гигиеническим нормативам ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населённых мест».

ПДКр.з. (рабочей зоны) не установлен (по ГОСТ 5457-75 и ГН 2.2.5.1314-03), так как концентрационные пределы распределения пламени в смеси с воздухом составляет 2,5—100 %.

Хранят и перевозят его в заполненных инертной пористой массой (например, древесным углём) стальных баллонах белого цвета (с красной надписью «А») в виде раствора в ацетоне под давлением 1,5—2,5 МПа.

  1. ↑ ГОСТ 5457-75. Ацетилен растворённый и газообразный технический. Технические условия
  2. 1 2 3 4 http://www.cdc.gov/niosh/npg/npgd0008.html
  3. ↑ Видео данного процесса
  4. 1 2 Хвостов, 1988.
  5. Лапидус А. Л., Голубева И. А., Жагфаров Ф. Г. Газохимия. Учебное пособие. — М.: ЦентрЛитНефтеГаз, 2008. — 450 с. — ISBN 978-5-902665-31-1.
  6. ↑ Большая энциклопедия нефти и газа. Неприятный запах — ацетилен (неопр.). Дата обращения 10 октября 2013.
  7. ↑ Корольченко. Пожаровзрывоопасность веществ, 2004, с. 198.
  8. ↑ Миллер. Ацетилен, его свойства, получение и применение, 1969, с. 72.
  9. ↑ Ацетилен (неопр.) (недоступная ссылка). Дата обращения 10 октября 2013. Архивировано 1 октября 2013 года.
  10. ↑ В России разработали ракетный двигатель на аммиаке — Известия
  • Миллер С. А. Ацетилен, его свойства, получение и применение. — Л.: Химия, 1969. — Т. 1. — 680 с.
  • Корольченко А. Я., Корольченко Д. А. Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник: в 2-х частях. Часть 1. — М.: Ассоциация «Пожнаука», 2004. — 713 с. — ISBN 5-901283-02-3.
  • Хвостов И. В. Ацетилен // Химическая энциклопедия: в 5 т. / И. Л. Кнунянц (гл. ред.). — М.: Советская энциклопедия, 1988. — Т. 1: А—Дарзана. — С. 226—228. — 623 с. — 100 000 экз. — ISBN 5-85270-008-8.

Этилен — Википедия

Этиле́н (по ИЮПАК: этен) — органическое химическое соединение, описываемое формулой С2H4. Является простейшим алкеном (олефином). При нормальных условиях — бесцветный горючий газ легче воздуха со слабым сладковатым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0 °C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах.

Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном. Этилен — самое производимое органическое соединение в мире[1]; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2—3 % в год[2]. Этилен обладает наркотическим действием. Класс опасности — четвёртый[3].

Этилен стали широко применять в качестве мономера перед Второй мировой войной в связи с необходимостью получения высококачественного изоляционного материала, способного заменить поливинилхлорид. После разработки метода полимеризации этилена под высоким давлением и изучения диэлектрических свойств получаемого полиэтилена началось его производство в мире.

Основным промышленным методом получения этилена является пиролиз жидких дистиллятов нефти или низших насыщенных углеводородов. Реакция проводится в трубчатых печах при +800-950 °С и давлении 0,3 МПа. При использовании в качестве сырья прямогонного бензина выход этилена составляет примерно 30 %. Одновременно с этиленом образуется также значительное количество жидких углеводородов, в том числе и ароматических. При пиролизе газойля выход этилена составляет примерно 15-25 %. Наибольший выход этилена — до 50 % — достигается при использовании в качестве сырья насыщенных углеводородов: этана, пропана и бутана. Их пиролиз проводят в присутствии водяного пара.

При выпуске с производства, при товарно-учётных операциях, при проверке его на соответствие нормативно-технической документации производится отбор проб этилена по процедуре, описанной в ГОСТ 24975.0-89 «Этилен и пропилен. Методы отбора проб». Отбор пробы этилена может производиться и в газообразном и в сжиженном виде в специальные пробоотборники по ГОСТ 14921.

Промышленно получаемый в России этилен должен соответствовать требованиям, изложенным в ГОСТ 25070-2013 «Этилен. Технические условия».

В настоящее время в структуре производства этилена 64 % приходится на крупнотоннажные установки пиролиза, ~17 % — на малотоннажные установки газового пиролиза, ~11 % составляет пиролиз бензина и 8 % падает на пиролиз этана.

Этилен является ведущим продуктом основного органического синтеза и применяется для получения следующих соединений (перечислены в алфавитном порядке):

Этилен в смеси с кислородом использовался в медицине для наркоза вплоть до середины 1980-х годов в СССР и на ближнем Востоке. Этилен является фитогормоном практически у всех растений[4], среди прочего[5] отвечает за опадание иголок у хвойных.

Электронное и пространственное строение молекулы[править | править код]

Атомы углерода находятся во втором валентном состоянии (sp2-гибридизация). В результате, на плоскости под углом 120° образуются три гибридных облака, которые образуют три σ-связи с углеродом и двумя атомами водорода; p-электрон, который не участвовал в гибридизации, образует в перпендикулярной плоскости π-связь с р-электроном соседнего атома углерода. Так образуется двойная связь между атомами углерода. Молекула имеет плоскостное строение.

Этилен — химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

  • Галогенирование:
Ch3=Ch3+Br2→Ch3Br-Ch3Br+D{\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+Br_{2}\rightarrow CH_{2}Br{\text{-}}CH_{2}Br+D}}}
Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.
  • Гидрирование:
Ch3=Ch3+h3→NiCh4-Ch4{\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+H_{2}{\xrightarrow[{}]{Ni}}CH_{3}{\text{-}}CH_{3}}}}
  • Гидрогалогенирование:
Ch3=Ch3+HBr→Ch4Ch3Br{\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+HBr\rightarrow CH_{3}CH_{2}Br}}}
Ch3=Ch3+h3O→H+Ch4Ch3OH{\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+H_{2}O{\xrightarrow[{}]{H^{+}}}CH_{3}CH_{2}OH}}}
Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.
Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. В результате образуется этиленгликоль. Уравнение реакции[6]:
3Ch3=Ch3+2KMnO4+4h3O→Ch3OH-Ch3OH+2MnO2+2KOH{\displaystyle {\mathsf {3CH_{2}{\text{=}}CH_{2}+2KMnO_{4}+4H_{2}O\rightarrow CH_{2}OH{\text{-}}CH_{2}OH+2MnO_{2}+2KOH}}}
Ch3=Ch3+3O2→2CO2+2h3O{\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+3O_{2}\rightarrow 2CO_{2}+2H_{2}O}}}
nCh3=Ch3→(-Ch3-Ch3-)n{\displaystyle {\mathsf {nCH_{2}{\text{=}}CH_{2}\rightarrow ({\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}})_{n}}}}
  • Димеризация[7]
2Ch3=Ch3→Ch3=CH-Ch3-Ch4{\displaystyle {\mathsf {2CH_{2}{\text{=}}CH_{2}\rightarrow CH_{2}{\text{=}}CH{\text{-}}CH_{2}{\text{-}}CH_{3}}}}
{\displaystyle {\mathsf {2CH_{2}{\text{=}}CH_{2}\rightarrow CH_{2}{\text{=}}CH{\text{-}}CH_{2}{\text{-}}CH_{3}}}} Сигнальный каскад этилена у растений. Этилен легко проникает сквозь клеточную мембрану и связывается с рецепторами, расположенными на эндоплазматическом ретикулуме. Рецепторы после активации высвобождают связанный EIN2. Это активирует каскад передачи сигнала, который приводит к активации экспрессии определённых генов и в конечном итоге к включению специфического ответа на этилен у данного растения в данной фазе созревания. Активированные участки ДНК считываются в мРНК, которая, в свою очередь, в рибосомах считывается в функционирующий белок фермента, который катализирует биосинтез этилена, тем самым продукция этилена в ответ на изначальный этиленовый же сигнал повышается до определённого уровня, запуская каскад реакций созревания растения.

Этилен — первый из обнаруженных газообразных растительных гормонов, обладающий очень широким спектром биологических эффектов[8]. Этилен выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов)[9], распускание бутонов (процесс цветения), старение и опадание листьев и цветков. Этилен называют также гормоном стресса, так как он участвует в реакции растений на биотический и абиотический стресс, и синтез его в органах растений усиливается в ответ на разного рода повреждения. Кроме того, являясь летучим газообразным веществом, этилен осуществляет быструю коммуникацию между разными органами растений и между растениями в популяции, что важно, в частности, при развитии стресс-устойчивости[10].

К числу наиболее известных функций этилена относится развитие так называемого тройного ответа у этиолированных (выращенных в темноте) проростков при обработке этим гормоном. Тройной ответ включает в себя три реакции: укорочение и утолщение гипокотиля, укорочение корня и усиление апикального крючка (резкий изгиб верхней части гипокотиля). Ответ проростков на этилен крайне важен на первых этапах их развития, так как способствует пробивание ростков к свету[10].

В коммерческом сборе плодов и фруктов используют специальные комнаты или камеры для дозревания плодов, в атмосферу которых этилен впрыскивается из специальных каталитических генераторов, производящих газообразный этилен из жидкого этанола. Обычно для стимулирования дозревания плодов используется концентрация газообразного этилена в атмосфере камеры от 500 до 2000 ppm в течение 24-48 часов. При более высокой температуре воздуха и более высокой концентрации этилена в воздухе дозревание плодов идёт быстрее. Важно, однако, при этом обеспечивать контроль содержания углекислого газа в атмосфере камеры, поскольку высокотемпературное созревание (при температуре выше 20 градусов Цельсия) или созревание при высокой концентрации этилена в воздухе камеры приводит к резкому повышению выделения углекислого газа быстро созревающими плодами, порой до 10 % углекислоты в воздухе спустя 24 часа от начала дозревания, что может привести к углекислотному отравлению как работников, убирающих уже дозревшие плоды, так и самих фруктов[11].

Этилен использовался для стимулирования созревания плодов ещё в Древнем Египте. Древние египтяне намеренно царапали или слегка мяли, отбивали финики, фиги и другие плоды с целью стимулировать их созревание (повреждение тканей стимулирует образование этилена тканями растений). Древние китайцы сжигали деревянные ароматические палочки или ароматические свечи в закрытых помещениях с целью стимулировать созревание персиков (при сгорании свеч или дерева выделяется не только углекислый газ, но и недоокисленные промежуточные продукты горения, в том числе и этилен). В 1864 году было обнаружено, что утечка природного газа из уличных фонарей вызывает торможение роста близлежащих растений в длину, их скручивание, аномальное утолщение стеблей и корней и ускоренное созревание плодов.[8] В 1901 году русский учёный Дмитрий Нелюбов показал, что активным компонентом природного газа, вызывающим эти изменения, является не основной его компонент, метан, а присутствующий в нём в малых количествах этилен[12]. Позднее в 1917 году Сара Дубт доказала, что этилен стимулирует преждевременное опадание листьев[13]. Однако только в 1934 году Гейн обнаружил, что сами растения синтезируют эндогенный этилен.[14]. В 1935 году Крокер предположил, что этилен является растительным гормоном, ответственным за физиологическое регулирование созревания плодов, а также за старение вегетативных тканей растения, опадание листьев и торможение роста[15].

{\displaystyle {\mathsf {2CH_{2}{\text{=}}CH_{2}\rightarrow CH_{2}{\text{=}}CH{\text{-}}CH_{2}{\text{-}}CH_{3}}}}

Этилен образуется практически во всех частях высших растений, включая листья, стебли, корни, цветки, мякоть и кожуру плодов и семена. Образование этилена регулируется множеством факторов, включая как внутренние факторы (например фазы развития растения), так и факторы внешней среды. В течение жизненного цикла растения, образование этилена стимулируется в ходе таких процессов, как оплодотворение (опыление), созревание плодов, опадание листьев и лепестков, старение и гибель растения. Образование этилена стимулируется также такими внешними факторами, как механическое повреждение или ранение, нападение паразитов (микроорганизмов, грибков, насекомых и др.), внешние стрессы и неблагоприятные условия развития, а также некоторыми эндогенными и экзогенными стимуляторами, такими, как ауксины и другие[16].

Цикл биосинтеза этилена начинается с превращения аминокислоты метионина в S-аденозил-метионин (SAMe) при помощи фермента метионин-аденозилтрансферазы. Затем S-аденозил-метионин превращается в 1-аминоциклопропан-1-карбоксиловую кислоту (АЦК, ACC) при помощи фермента 1-аминоциклопропан-1-карбоксилат-синтетазы (АЦК-синтетазы). Активность АЦК-синтетазы лимитирует скорость всего цикла, поэтому регуляция активности этого фермента является ключевой в регуляции биосинтеза этилена у растений. Последняя стадия биосинтеза этилена требует наличия кислорода и происходит при действии фермента аминоциклопропанкарбоксилат-оксидазы (АЦК-оксидазы), ранее известной как этиленобразующий фермент. Биосинтез этилена у растений индуцируется как экзогенным, так и эндогенным этиленом (положительная обратная связь). Активность АЦК-синтетазы и, соответственно, образование этилена повышается также при высоких уровнях ауксинов, в особенности индолуксусной кислоты, и цитокининов.

Этиленовый сигнал у растений воспринимается минимум пятью различными семействами трансмембранных рецепторов, представляющих собой димеры белков. Известен, в частности, рецептор этилена ETR1 у арабидопсиса (Arabidopsis). Гены, кодирующие рецепторы для этилена, были клонированы у арабидопсиса и затем у томата. Этиленовые рецепторы кодируются множеством генов как в геноме арабидопсиса, так и в геноме томатов. Мутации в любом из семейства генов, которое состоит из пяти типов этиленовых рецепторов у арабидопсиса и минимум из шести типов рецепторов у томата, могут привести к нечувствительности растений к этилену и нарушениям процессов созревания, роста и увядания[17]. Последовательности ДНК, характерные для генов этиленовых рецепторов, были обнаружены также у многих других видов растений. Более того, этиленсвязывающий белок был найден даже у цианобактерий[8].

Неблагоприятные внешние факторы, такие, как недостаточное содержание кислорода в атмосфере, наводнение, засуха, заморозки, механическое повреждение (ранение) растения, нападение патогенных микроорганизмов, грибков или насекомых, могут вызывать повышенное образование этилена в тканях растений. Так, например, при наводнении корни растения страдают от избытка воды и недостатка кислорода (гипоксии), что приводит к биосинтезу в них 1-аминоциклопропан-1-карбоксиловой кислоты. АЦК затем транспортируется по проводящим путям в стеблях вверх, до листьев, и в листьях окисляется до этилена. Образовавшийся этилен способствует эпинастическим движениям, приводящим к механическому стряхиванию воды с листьев, а также увяданию и опаданию листьев, лепестков цветков и плодов, что позволяет растению одновременно и избавиться от избытка воды в организме, и сократить потребность в кислороде за счёт сокращения общей массы тканей[18].

Небольшие количества эндогенного этилена также образуются в клетках животных, включая человека, в процессе перекисного окисления липидов. Некоторое количество эндогенного этилена затем окисляется до этиленоксида, который обладает способностью алкилировать ДНК и белки, в том числе гемоглобин (формируя специфический аддукт с N-терминальным валином гемоглобина — N-гидроксиэтил-валин)[19]. Эндогенный этиленоксид также может алкилировать гуаниновые основания ДНК, что приводит к образованию аддукта 7-(2-гидроксиэтил)-гуанина, и является одной из причин присущего всем живым существам риска эндогенного канцерогенеза[20]. Эндогенный этиленоксид также является мутагеном[21][22]. С другой стороны, существует гипотеза, что если бы не образование в организме небольших количеств эндогенного этилена и соответственно этиленоксида, то скорость возникновения спонтанных мутаций и соответственно скорость эволюции была бы значительно ниже.

  1. Devanney Michael T. Ethylene (англ.) (недоступная ссылка). SRI Consulting (September 2009). Архивировано 18 июля 2010 года.
  2. ↑ Ethylene (англ.) (недоступная ссылка). WP Report. SRI Consulting (January 2010). Архивировано 31 августа 2010 года.
  3. ↑ Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, бутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (Утв. главным государственным санитарным врачом РФ 30.03.2003)
  4. ↑ «Рост и развитие растений» В. В. Чуб (неопр.) (недоступная ссылка). Дата обращения 21 января 2007. Архивировано 20 января 2007 года.
  5. ↑ «Delaying Christmas tree needle loss»
  6. Хомченко Г.П. §16.6. Этилен и его гомологи // Химия для поступающих в вузы. — 2-е изд. — М.: Высшая школа, 1993. — С. 345. — 447 с. — ISBN 5-06-002965-4.
  7. ↑ В. Ш. Фельдблюм. Димеризация и диспропорционирование олефинов. М.: Химия, 1978
  8. 1 2 3 Lin, Z.; Zhong, S.; Grierson, D. Recent advances in ethylene research (англ.) // Journal of Experimental Botany : journal. — Oxford University Press, 2009. — Vol. 60, no. 12. — P. 3311—3336. — doi:10.1093/jxb/erp204. — PMID 19567479.
  9. ↑ Ethylene and Fruit Ripening / J Plant Growth Regul (2007) 26:143-159 doi:10.1007/s00344-007-9002-y (англ.)
  10. 1 2 Лутова Л.А. Генетика развития растений / ред. С.Г. Инге-Вечтомов. — 2-е изд.. — Санкт-Петербург: Н-Л, 2010. — С. 432.
  11. ↑ External Link to More on Ethylene Gassing and Carbon Dioxide Control. ne-postharvest.com Архивная копия от 14 сентября 2010 на Wayback Machine
  12. Нелюбов Д. Н. О горизонтальной нутации у Pisum sativum и некоторых других растений (рус.) // Труды Санкт-Петербургского Общества Естествознания : журнал. — 1901. — Т. 31, № 1., также Beihefte zum «Bot. Centralblatt», т. Х, 1901
  13. Doubt, Sarah L. The Response of Plants to Illuminating Gas (англ.) // Botanical Gazette : journal. — 1917. — Vol. 63, no. 3. — P. 209—224. — doi:10.1086/332006.
  14. Gane R. Production of ethylene by some fruits (англ.) // Nature. — 1934. — Vol. 134, no. 3400. — P. 1008. — doi:10.1038/1341008a0. — Bibcode: 1934Natur.134.1008G.
  15. ↑ Crocker W, Hitchcock AE, Zimmerman PW. (1935) «Similarities in the effects of ethlyene and the plant auxins». Contrib. Boyce Thompson Inst. 7. 231-48. Auxins Cytokinins IAA Growth substances, Ethylene
  16. Yang, S. F., and Hoffman N. E. Ethylene biosynthesis and its regulation in higher plants (англ.) // Ann. Rev. Plant Physiol. : journal. — 1984. — Vol. 35. — P. 155—189. — doi:10.1146/annurev.pp.35.060184.001103.
  17. Bleecker A. B., Esch J. J., Hall A. E., Rodríguez F. I., Binder B. M. The ethylene-receptor family from Arabidopsis: structure and function. (англ.) // Philosophical transactions of the Royal Society of London. Series B, Biological sciences. — 1998. — Vol. 353, no. 1374. — P. 1405—1412. — doi:10.1098/rstb.1998.0295. — PMID 9800203. [исправить]
  18. ↑ Explaining Epinasty. planthormones.inf
  19. Filser J. G., Denk B., Törnqvist M., Kessler W., Ehrenberg L. Pharmacokinetics of ethylene in man; body burden with ethylene oxide and hydroxyethylation of hemoglobin due to endogenous and environmental ethylene. (англ.) // Arch Toxicol. : journal. — 1992. — Vol. 66, no. 3. — P. 157—163. — PMID 1303633.
  20. Bolt H. M., Leutbecher M., Golka K. A note on the physiological background of the ethylene oxide adduct 7-(2-hydroxyethyl)guanine in DNA from human blood. (англ.) // Arch Toxicol. : journal. — 1997. — Vol. 71, no. 11. — P. 719—721. — PMID 9363847.
  21. Csanády G. A., Denk B., Pütz C., Kreuzer P. E., Kessler W., Baur C., Gargas M. L., Filser JG. A physiological toxicokinetic model for exogenous and endogenous ethylene and ethylene oxide in rat, mouse, and human: formation of 2-hydroxyethyl adducts with hemoglobin and DNA. (англ.) // Toxicol Appl Pharmacol. : journal. — 2000. — 15 May (vol. 165, no. 1). — P. 1—26. — PMID 10814549.
  22. Thier R., Bolt HM. Carcinogenicity and genotoxicity of ethylene oxide: new aspects and recent advances. (англ.) // Crit Rev Toxicol. : journal. — 2000. — September (vol. 30, no. 5). — P. 595—608. — PMID 11055837.
  • Безуглова О. С. Этилен (неопр.). Удобрения и стимуляторы роста. Дата обращения 22 февраля 2015.

Этан — Википедия

Этан
Ethane-2D.png
({{{картинка}}})
Ethane-A-3D-balls.png({{{картинка3D}}})
Ethane-3D-vdW.png({{{картинка малая}}})
Систематическое
наименование
Этан
Хим. формула C2H6
Рац. формула H3CCH3
Состояние газ
Молярная масса 30,07 г/моль
Плотность 1,2601 кг/м³ в стандартных условиях по ГОСТ 2939—63; при н. у. (0С) 0,001342 г/см³
Температура
 • плавления −182,8 °C
 • кипения −88,6 °C
 • вспышки 152 °C
 • воспламенения 152 °C
 • самовоспламенения 472 °C
Мол. теплоёмк. 52,65 Дж/(моль·К)
Энтальпия
 • образования -84,67 кДж/моль
Давление пара 2,379 МПа (0°С)
Константа диссоциации кислоты pKa{\displaystyle pK_{a}} 42 (вода, 20°С)
Рег. номер CAS 74-84-0
PubChem 6324
Рег. номер EINECS 200-814-8
SMILES
InChI
RTECS Kh4800000
ChEBI 42266
Номер ООН 1035
ChemSpider 6084
Токсичность Малотоксичен. Обладает слабым наркотическим действием
Краткие характер. опасности (H)
Меры предостор. (P) P210, P377, P381, P410+P403
Сигнальное слово Опасно
Пиктограммы СГС Пиктограмма «Пламя» системы СГСПиктограмма «Газовый баллон» системы СГС
NFPA 704 NFPA 704 four-colored diamond
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Commons-logo.svg Медиафайлы на Викискладе

Эта́н (лат. ethanum), C2H6 — органическое соединение, второй член гомологического ряда алканов. Газ без цвета и запаха. В промышленности этан получают из природного газа и нефти и расходуют преимущественно для производства этилена.

Этан при н. у. — бесцветный газ, без запаха и вкуса. Молярная масса — 30,07. Температура плавления −183,23 °C, температура кипения −88,63 °C. Плотность ρгаз.=0,001342 г/см³ или 1,342 кг/м³ (н. у.), ρжидк.=0,561 г/см³ (T=-100 °C). Давление паров при 0 °C — 2,379 МПа. Растворимость в воде — 4,7 мл в 100 мл (при 20 °C), в этаноле — 46 мл в 100 мл (при 0 °C), хорошо растворяется в углеводородах. Точка вспышки у этана равна –187,8 °C, температура самовоспламенения — 595 °C. Этан образует с воздухом взрывоопасные смеси при содержании 5–15 об. % (при 20 °C). Октановое число —120,3[2][3][4].

Commons-logo.svg Параметры молекулы этана Конформеры этана

Молекула этана имеет тетраэдрическое строение: атомы углерода являются sp3-гибридными. Связь C–C образована перекрыванием sp3-гибридных орбиталей, а связь C–H — перекрыванием sp3-гибридной орбитали углерода и s-орбитали водорода. Длина связи C–C равна 1,54 Å, а длина связи C–H равна 1,095 Å[5].

Поскольку С–С-связь в этане одинарная, вокруг неё возможно свободное вращение метильных групп. При вращении возникают различные пространственные формы молекулы этана, которые называются конформациями. Конформации принято изображать в виде перспективного изображения (такие изображения иногда называют «лесопильными козлами») либо в виде проекций Ньюмена[5].

Число конформаций для этана бесконечно, однако принято рассматривать две крайние конформации:

  • заслонённую, в которой атомы водорода максимально сближены в пространстве;
  • и заторможенную, в которой атомы водорода максимально удалены[5].

Заслонённая конформация имеет наибольшую энергию из всех конформаций, а заторможенная — наименьшую, то есть является наиболее энергетически выгодной и, следовательно, более устойчивой. Разница энергии между этими конформациями равна 2,9 ккал/моль. Считается, что это число отражает торсионное напряжение в менее выгодной заслонённой конформации. Если разделить эту энергию на три взаимодействия между парами атомов водорода, то энергия торсионного взаимодействия двух атомов водорода составит примерно 1 ккал/моль[5].

По значению 2,9 ккал/моль из уравнения Гиббса можно вычислить константу равновесия между двумя конформациями этана. При температуре 25 °С значительно преобладает заторможенная конформация: 99 % молекул этана находятся в этой конформации и лишь 1 % — в заслонённой[5].

Энергии крайних и промежуточных конформаций принято представлять в виде циклических графиков, где по оси абсцисс отложен торсионный угол, а по оси ординат — энергия.

Энергия конформаций этана

В промышленности[править | править код]

В промышленности получают из нефтяных и природных газов, где он составляет до 10 % по объёму. В России содержание этана в нефтяных газах очень низкое. В США и Канаде (где его содержание в нефтяных и природных газах высоко) служит основным сырьём для получения этилена[6]. Также этан получают при гидрокрекинге углеводородов и ожижении углей[7].

В лабораторных условиях[править | править код]

В 1848 году Кольбе и Франкленд впервые синтетически получили этан, обработав пропионитрил металлическим калием. В 1849 году они получили этот газ электролизом ацетата калия и действием цинка и воды на иодэтан[8].

В лаборатории этан можно получить несколькими способами:

2Ch4I+2Na→Ch4Ch4+2NaI{\displaystyle {\mathsf {2CH_{3}I+2Na\rightarrow CH_{3}CH_{3}+2NaI}}}
Ch4COO−−e−→Ch4COO⋅→Ch4⋅+CO2{\displaystyle {\mathsf {CH_{3}COO^{-}-e^{-}\rightarrow CH_{3}COO\cdot \rightarrow CH_{3}\cdot +CO_{2}}}}
2Ch4⋅→Ch4Ch4{\displaystyle {\mathsf {2CH_{3}\cdot \rightarrow CH_{3}CH_{3}}}}
Ch4Ch3COONa+NaOH→Ch4Ch4+Na2CO3{\displaystyle {\mathsf {CH_{3}CH_{2}COONa+NaOH\rightarrow CH_{3}CH_{3}+Na_{2}CO_{3}}}}
Ch4Ch3Br+Mg→Ch4Ch3MgBr{\displaystyle {\mathsf {CH_{3}CH_{2}Br+Mg\rightarrow CH_{3}CH_{2}MgBr}}}
Ch4Ch3MgBr+h3O→Ch4Ch4+MgOHBr{\displaystyle {\mathsf {CH_{3}CH_{2}MgBr+H_{2}O\rightarrow CH_{3}CH_{3}+MgOHBr}}}
Ch3Ch3+h3→Ch4Ch4{\displaystyle {\mathsf {CH_{2}CH_{2}+H_{2}\rightarrow CH_{3}CH_{3}}}}
HC≡CH+2h3→Ch4Ch4{\displaystyle {\mathsf {HC\equiv CH+2H_{2}\rightarrow CH_{3}CH_{3}}}}

Этан вступает в типичные реакции алканов, прежде всего реакции замещения, проходящие по свободнорадикальному механизму. Среди химических свойства этана можно выделить:

Основное использование этана в промышленности — получение этилена методом парового крекинга. Именно из этилена далее получают важные промышленные продукты, однако в целях экономии разрабатываются методы превращения в них самого этана. Однако ни один из проектов пока не прошёл пилотную стадию. Проблемы в этой области связаны с низкой селективностью реакций. Одним из перспективных направлений является синтез винилхлорида напрямую из этана. Также применяется превращение этана в уксусную кислоту. Термическим хлорированием этана в различных условиях получают хлорэтан, 1,1-дихлорэтан и 1,1,1-трихлорэтан[7].

Этан обладает слабым наркотическим действием (ослаблено за счёт низкой растворимости в жидкостях организма). Класс опасности — четвёртый[9]. В концентрациях 2-5 об. % он вызывает одышку, в умеренных концентрациях — головные боли, сонливость, головокружение, повышенное слюноотделение, рвоту и потерю сознания из-за недостатка кислорода. В высоких концентрациях этан может вызвать сердечную аритмию, остановку сердца и остановку дыхания. При постоянном контакте может возникнуть дерматит. Сообщается, что при 15-19 об. % этан вызывает повышение чувствительности миокарда к катехоламинам[10].

Предположительно, на поверхности Титана (спутник Сатурна) в условиях низких температур (−180 °C) существуют целые озёра и реки из жидкой метано-этановой смеси[11].

  1. ↑ Ethane (неопр.). Sigma-Aldrich. Дата обращения 6 апреля 2019.
  2. ↑ Ullmann, 2014, p. 3–5.
  3. 1 2 3 Химическая энциклопедия.
  4. Рабинович В. А., Хавин З. Я. Краткий химический справочник. — Изд. 2-е. — Химия, 1978. — С. 199.
  5. 1 2 3 4 5 Реутов О. А., Курц А. Л., Бутин К. П. Органическая химия : в 4 т.. — 5-е изд. — БИНОМ. Лаборатория знаний, 2014. — Т. 1. — С. 321—326. — ISBN 978-5-9963-1535-2.
  6. ↑ Химическая энциклопедия, 1998.
  7. 1 2 Ullmann, 2014, p. 13.
  8. ↑ ЭСБЕ.
  9. ↑ Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, нбутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (недоступная ссылка)
  10. ↑ Ullmann, 2014, p. 61.
  11. Mousis O., Schmitt B. Sequestration of Ethane in the Cryovolcanic Subsurface of Titan (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 2008. — April (vol. 677). — doi:10.1086/587141.
  • Братков А. А. Этан // Химическая энциклопедия: в 5 т. / Н. С. Зефиров (гл. ред.). — М.: Большая Российская энциклопедия, 1998. — Т. 5: Триптофан—Ятрохимия. — С. 491. — 783 с. — 10 000 экз. — ISBN 5-85270-310-9.
  • Schmidt R., Griesbaum K., Behr A., Biedenkapp D., Voges H.-W., Garbe D., Paetz C., Collin G., Mayer D., Höke H. Hydrocarbons (англ.) // Ullmann's Encyclopedia of Industrial Chemistry. — Wiley, 2014. — doi:10.1002/14356007.a13_227.pub3.
  • The chemistry of alkanes and cycloalkanes / Ed. Saul Patai and Zvi Rappoport. — John Wiley & Sons, 1992. — ISBN 0-471-92498-9.
  • Тутурин Н. Н. Этан // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

а) Ch5 ⟶ C2h3 ⟶ Ch4-COH ⟶ Ch4-Ch3OH ⟶ Ch4-Ch3-Br ⟶ C2h5

а)

2CH4  t ⟶ CH≡CH + 3H2

CH≡CH + H2O   HgSO₄, H⁺  + 2Ag↓
+ H2   кат.  CH3–CH2OH

CH3–CH2OH + HBr ⟶ CH3–CH2–Br + H2O

CH3–CH2–Br + KOH   спиртовой р-р ⟶ CH2=CH2 + KBr + H2O

CH2=CH2 + H2O   H⁺ ⟶ CH3–CH2OH

CH3–CH2OH + [O] + H2O

б)

CH4 + O2   кат.  + H2O
+ H2   t, кат.  CH3OH

CH3OH + HCl ⟶ CH3Cl + H2O

2CH3Cl + 2Na ⟶ C2H6 + 2NaCl

C2H6 + Cl2  свет ⟶ C2H5Cl + HCl

C2H5Cl + NaOH ⟶ C2H5OH + NaCl

CH3–CH2OH + Ag2O   t, аммиачный р-р  + 2Ag↓

gomolog.ru

C2h3 + [Ag(Nh4)2]OH = ? уравнение реакции

При пропускании ацетилена через аммиачный раствор оксида серебра (C2h3 + [Ag(Nh4)2]OH = ?) или хлорида меди (I) легко образуются ацетилениды серебра и меди, которые выпадают из раствора в осадок:

   

   

Ацетиленид серебра – белый осадок, становящийся со временем серым, ацетиленид меди – осадок красно-бурого цвета.
Реакции образования ацетиленидов серебра и меди используют для идентификации алкинов с концевой тройной связью (качественные реакции на концевую тройную связь).

   

Ацетилен (этин) представляет собой газ без цвета и запаха, обладает слабым наркотическим свойством. В промышленности ацетилен получают из метана путем высокотемпературного крекинга. Сырьем служит природный газ, который в основном состоит из метана. Другим промышленным способом является получение ацетилена из каменного угля.
Для ацетилена характерны реакции присоединения (галогенирование, гидрогалогенирование, гидратация), окисления и восстановления. Кроме этого алкины проявляют кислотные свойства, т.е. способны образовывать соли – ацетилениды. В результате тримеризации ацетилена – пропускание его над активированным углем при — образуется бензол:

   

Ch5 -> C2h3 уравнение реакции

Ацетилен из метана можно получить двумя способами, оба из которых подходят к указанной схеме Ch5 -> C2h3. Во-первых, если проводить термоокислительный крекинг метана, то в качестве одного из многочисленных продуктов реакции образуется ацетилен. Уравнение реакции имеет вид:

   

Во-вторых, одним из наиболее популярных методов получения ацетилена из метана является пиролиз последнего, проводимый при температуре . Уравнение реакции имеет вид:

   

Теперь переходим к решению задачи. Первоначально рассчитаем количество молей метана, вступившего в реакцию пиролиза ():

   

 

   

Согласно уравнению реакции , значит . Тогда масса ацетилена будет равна (молярная масса – 26 g/mole):